

New Properties for Markov Evolution Algebras

José M. Toro¹ Pablo M. Rodriguez²

UFPE, Recife, PE

Irene Paniello³

UNIZAR, Saragoça, ESPANHA

Evolution algebras are a class of non-associative algebras that arise as a mathematical model to represent non-Mendelian genetics. They have sparked great interest in various fields of knowledge such as graph theory, dynamical systems, and Markov chains. The concept was first introduced by [4], in a finite-dimensional approach, and later extended by [3].

Definition 1. [3, Definition 3] Let Λ be a countable set. An evolution algebra \mathcal{A} is an \mathbb{R} -algebra that admits a natural basis $\mathcal{B} = \{\mathbf{e}_i \mid i \in \Lambda\}$, such that $\mathbf{e}_i \cdot \mathbf{e}_i = \sum_{k \in \Lambda} c_{ik} \mathbf{e}_k$, for all $i \in \Lambda$, and $\mathbf{e}_i \cdot \mathbf{e}_j = \mathbf{0}$, for all $i, j \in \Lambda$ such that $i \neq j$.

Whether $c_{ik} \in [0, 1]$, for any $i, k \in \Lambda$, and $\sum_{k \in \Lambda} c_{ik} = 1$, for any $i \in \Lambda$, then \mathcal{A} is called a Markov evolution algebra. Thus defined, $\{c_{ik}\}$ are transition probabilities of a discrete-time Markov chain, so a correspondence can be established between \mathcal{A} and a discrete-time Markov chain $(X_n)_{n \geq 0}$ with state space $S = \{x_i \mid i \in \Lambda\}$ and transition probabilities given by $c_{ik} := \mathbb{P}(X_{n+1} = x_k \mid X_n = x_i)$, for $i, k \in \Lambda$ and $n \in \mathbb{N}$. In other words, a Markov evolution algebra \mathcal{A} with a natural basis \mathcal{B} “generates” a discrete-time homogeneous Markov chain with time space S . The first reference discussing the interplay between evolution algebras and Markov chains is [3, Chapter 4], where many well-known results coming from Markov chains are stated in the language of Markov evolution algebras. In this work, we review the properties established by [3] and, by exploring their connection with Probability Theory, simplify some of the proofs. In addition, we extend some results and establish new properties for the case where Λ is not finite. The following results are part of [5].

Theorem 1. Let $\{X_n\}_{n \geq 0}$ be a Markov chain with countable state space S , such that:

$$|\{k \in S : c_{ik} > 0\}| < \infty, \text{ for all } i \in S. \quad (1)$$

Then, $\{X_n\}_{n \geq 0}$ generates a Markov evolution algebra $\mathcal{A}(X_n)$ with natural basis $\mathcal{B} = \{\mathbf{e}_i \mid i \in S\}$ and structure constants given by $c_{ik} := \mathbb{P}(X_{n+1} = k \mid X_n = i)$, for $i, k \in S$ and for any $n \in \mathbb{N}$.

Theorem 1 formalizes how a Markov evolution algebra is associated with a given discrete-time Markov chain, provided that (1) holds for any $i \in S$. This result extends and improves [3, Theorem 16], because although that theorem claims that any discrete-time Markov chain can be associated with a Markov evolution algebra, this is not entirely true when S is a countably infinite state space and (1) is not taken into account. For counterexamples, see [5, Section 2.1] and [1, Example 1]. This is because, in [3, Definition 3], the basis is implicitly assumed to be a Hamel basis. Once this connection is well-established, certain properties can be derived by exploring the relationship between Markov chains and evolution algebras. In what follows, we state one of these properties and refer the reader to [5] for further details, and additional results.

¹jose.jaramillo@ufpe.br

²pablo@de.ufpe.br

³ipaniello@posta.unizar.es

Theorem 2. Let $\mathcal{A}(X_n)$ be the Markovian evolution algebra generated by the Markov chain $\{X_n\}_{n \geq 0}$, and let $S_0 \subsetneq S$. S_0 is a closed class in the Markov chain if, and only if, $\text{span}\{e_i \mid i \in S_0\}$ is a simple evolution subalgebra.

Theorem 2 is related to [3, Theorem 17] which states that S_0 is a closed subset in S if and only if $\text{span}\{e_i \mid i \in S_0\}$ is an evolution subalgebra. Our result gains in interest if we recognize that understanding the closed classes of a Markov chain is essential for analyzing its long-term behavior.

Exemple 1. Let $\{X_n\}_{n \geq 0}$ with digraph of transitions given by Figure 1 and consider $\mathcal{A}(X_n)$. The classes are $C(1)$, $C(3)$, $C(4)$. In the evolution algebra, $\langle e_1 \rangle = \text{span}\{e_1, e_2\}$, $\langle e_3 \rangle = \text{span}\{e_1, e_2, e_3\}$. If $S_0 = \{1, 2, 3\}$, a closed subset that is not a class, then $\text{span}\{e_1, e_2, e_3\}$ is an evolution subalgebra that is not simple. If $S_0 = \{1, 2\}$, a closed class, then $\text{span}\{e_1, e_2\}$ is a simple evolution subalgebra.

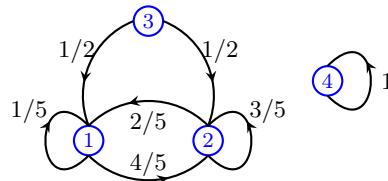


Figure 1: Digraph of transitions for the Markov chain of Example 1. Source: Authors.

This work explores the connection between Markov chains and evolution algebras, where Markov chain concepts are expressed in a non-associative algebraic framework. After reviewing recent results from [2, 3], we simplify some proofs and derive new properties.

Acknowledgments

This work is part of the master's thesis of José Manuel Jaramillo Toro, under the supervision of Professor Pablo Rodríguez and Professor Irene Paniello. Toro expresses his gratitude to the Graduate Program in Statistics at UFPE for the academic and professional training provided during this period, as well as to FACEPE (IBPG-1305-1.02/22, AMD-0059-1.02/24) for financial support. Part of this research was conducted during Toro's visit to IUMA – University of Zaragoza, and he extends his gratitude to the institution for its hospitality and support.

References

- [1] P. Cadavid, P. M. Rodriguez, and S. J. Vidal. “Hilbert evolution algebras and its connection with discrete-time Markov chains”. In: **Indian Journal of Pure and Applied Mathematics** 54.3 (2023), pp. 883–894. DOI: 10.1007/s13226-022-00304-y.
- [2] I. Paniello. “Markov evolution algebras”. In: **Linear and Multilinear Algebra** 70.19 (2022), pp. 4633–4653. DOI: 10.1080/03081087.2021.1893636.
- [3] J. P. Tian. **Evolution Algebras and their Applications**. 1a. ed. Berlin: Springer Berlin, Heidelberg, 2008. ISBN: 978-3-540-74284-5.
- [4] J.P. Tian and Vojtěchovský P. “Mathematical concepts of evolution algebras in non-Mendelian genetics”. In: **Quasigroups and Related Systems** 14.1 (2006), pp. 111–122.
- [5] J. M. Toro. “Conexão entre álgebras de evolução e cadeias de Markov”. Master dissertation. UFPE, 2025.