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Evolution algebras are a class of non-associative algebras that arise as a mathematical model to
represent non-Mendelian genetics. They have sparked great interest in various fields of knowledge
such as graph theory, dynamical systems, and Markov chains. The concept was first introduced
by [4], in a finite-dimensional approach, and later extended by [3].

Definition 1. [3, Definition 3] Let A be a countable set. An evolution algebra A is an R-algebra
that admits a natural basis B = {e; | i € A}, such that e; - e; = ), ., cirex, for all i € A, and
ei-e; =0, forall i,j € A such that i # j.

Whether ¢, € [0,1], for any 4,k € A, and ), ., cix = 1, for any i € A, then A is called a Markov
evolution algebra. Thus defined, {c;;} are transition probabilities of a discrete-time Markov chain,
so a correspondence can be established between A and a discrete-time Markov chain (X, )n>0 with
state space S = {z; | i € A} and transition probabilities given by ¢;;, := P(X,,11 = x| X, = ), for
i,k € Aandn € N. In other words, a Markov evolution algebra A with a natural basis B “generates”
a discrete-time homogeneous Markov chain with time space S. The first reference discussing the
interplay between evolution algebras and Markov chains is [3, Chapter 4], where many well-known
results coming from Markov chains are stated in the language of Markov evolution algebras. In
this work, we review the properties established by [3] and, by exploring their connection with
Probability Theory, simplify some of the proofs. In addition, we extend some results and establish
new properties for the case where A is not finite. The following results are part of [5].

Theorem 1. Let {X,,}n,>0 be a Markov chain with countable state space S, such that:
[{k€S:cp>0}|<o0, forallieb. (1)

Then, {Xy}n>0 generates a Markov evolution algebra A(X,) with natural basis B = {e; | i € S}
and structure constants given by c;, := P(X, 41 = k| X,, = 1), for i,k € S and for any n € N.

Theorem 1 formalizes how a Markov evolution algebra is associated with a given discrete-time
Markov chain, provided that (1) holds for any ¢ € S. This result extends and improves [3, Theorem
16], because although that theorem claims that any discrete-time Markov chain can be associated
with a Markov evolution algebra, this is not entirely true when .S is a countably infinite state space
and (1) is not taken into account. For counterexamples, see [5, Section 2.1] and [1, Example 1].
This is because, in [3, Definition 3], the basis is implicitly assumed to be a Hamel basis. Once
this connection is well-established, certain properties can be derived by exploring the relationship
between Markov chains and evolution algebras. In what follows, we state one of these properties
and refer the reader to [5] for further details, and additional results.
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Theorem 2. Let A(X,) be the Markovian evolution algebra generated by the Markov chain
{Xn}n>0, and let Sy € S. Sy is a closed class in the Markov chain if, and only if, span{e; | i € Sp}
is a simple evolution subalgebra.

Theorem 2 is related to [3, Theorem 17| which states that Sy is a closed subset in S if and only
if span{e; | i € Sy} is an evolution subalgebra. Our result gains in interest if we recognize that
understanding the closed classes of a Markov chain is essential for analyzing its long-term behavior.

Exemple 1. Let { X, }n>0 with digraph of transitions given by Figure 1 and consider A(X,). The
classes are C(1), C(3), C(4). In the evolution algebra, (1) = span{ei, ez}, (e3) = span{ei,es,e3}.
If So = {1,2,3}, a closed subset that is not a class, then span{ei, ez, es} is an evolution subalgebra
that is not simple. If So = {1,2}, a closed class, then span{ey, es} is a simple evolution subalgebra.

Figure 1: Digraph of transitions for the Markov chain of Example 1. Source: Authors.

This work explores the connection between Markov chains and evolution algebras, where Markov
chain concepts are expressed in a non-associative algebraic framework. After reviewing recent
results from [2, 3], we simplify some proofs and derive new properties.
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