Uma Abordagem usando o Fibrado de Clifford sobre a Geometria Diferencial de Branas

Waldyr Alves Rodrigues Jr., Samuel Augusto Wainer,

Instituto de Matemática e Estatística e Computação Científica, IMECC-UNICAMP, 13083-859, Campinas, SP

E-mail: walrod@ime.unicamp.br, samuelwainer@ime.unicamp.br

Resumo: Primeiramente relembraremos, usando o formalismo do fibrado de Clifford (FFC) de formas diferenciais e a teoria dos extensores agindo em $\mathcal{C}\ell(M,q)$ (o fibrado de Clifford de formas diferencias), a formulação da geometria intrínseca de uma variedade diferenciável M equipada com um tensor métrico \mathbf{q} de assinatura (p,q) e uma conexão compatível com a métrica arbitrária ∇ , introduzindo o campo (2-1)-extensorial de torção τ , o campo (2-2)-extensorial de curvatura \Re e (uma vez fixado o calibre) o (1-2)-extensor de conexão ω e o operador de Ricci $\partial \wedge \partial$ (onde ∂ é o operador de Dirac agindo em seções de $\mathcal{C}\ell(M,g)$) o qual apresenta grande importância nesse trabalho. Em sequida, usando o FFC daremos uma apresentação da geometria Riemanniana ou Lorentziana de uma subvariedade orientável M (dim M=m) mergulhada em uma variedade M (tal que $M \simeq \mathbb{R}^n$ está equipada com uma métrica semi-Riemanniana \mathring{g} de assinatura (p,q), p+q=n e com conexão de Levi-Civita D) onde definimos uma métrica $g = i^* \mathring{g}$, onde $i : M \to M$ é o mapa inclusão. Provamos várias formas equivalentes do operador de curvatura \Re de M [11]. Mostraremos um resultado muito importante, de que o operador de Ricci de M é o (negativo) quadrado do operador de formato (shape operator do inglês) S de M (objeto obtido aplicando-se o operador projeção P à restrição sobre M do operador de Dirac ∂ de $\mathcal{C}\ell(M,\mathring{g})$). Também obteremos a relação entre o (1-2)-extensor de conexão ω e a biforma de formato (do inglês shape biform) S (um objeto relacionado com S). Os resultados obtidos são usados para dar uma formulação matemática para a teoria de Clifford da matéria. Esperamos que nosso trabalho seja útil para geômetras diferenciais e físicos teóricos interessados, e.g., em teoria de cordas e branas e na teoria da relatividade, divulgando e expandindo resultados muito importantes que aparecem na referência [5].

Palavras-chave: Fibrado de Clifford, Branas, Relatividade Geral, Operadores de Formato, Operador Curvatura, Operador de Ricci, Tensor de Curvatura

1 Introdução

Neste trabalho usamos o formalismo do fibrado de Clifford (FFC) para analisarmos a geometria Riemanniana e Lorentziana de uma subvariedade orientável M (dim M=m) mergulhada numa variedade \mathring{M} tal que $\mathring{M} \simeq \mathbb{R}^n$ está equipada com uma métrica semi-Riemanniana $\mathring{\boldsymbol{g}}$ (com assinatura (p,q) e p+q=n) e sua conexão de Levi-Civita \mathring{D} . Os resultados que citamos nessa seção podem ser encontrados em [11].

Para atingirmos nossos objetivos e exibirmos alguns resultados interessantes que não são bem conhecidos (e os quais, e.g.,possivelmente podem ser do interesse para a descrição e formulação das teorias de branas [7] e teorias de cordas [1, 4]) primeiramente relembraremos como formular usando FFC a geometria intrínseca de uma estrutura $\langle M, g, \nabla \rangle$ onde ∇ é uma conexão geral de Riemann-Cartan compatível com a métrica, i.e., $\nabla g = 0$ e os tensores de Riemann e de torção de ∇ são não nulos. Na nossa abordagem introduziremos (desde de que fixado um calibre no fibrado das bases) um campo (1, 2)-extensorial ω : $\sec \bigwedge^1 T^*M \to \sec \bigwedge^2 T^*M$ intimamente

relacionado com a 1-forma de conexão que permite escrever uma fórmula muito interessante para a derivada covariante para qualquer seção do fibrado de Clifford da estrutura $\langle M, \boldsymbol{g}, \nabla \rangle$. Será mostrado que $\boldsymbol{\omega}$ está relacionado com $\mathcal{S} : \sec \bigwedge^1 T^*M \to \sec \bigwedge^2 T^*M$ a biforma de formato da variedade.

Suporemos que M é uma subvariedade $pr\acute{o}pria^1$ de \mathring{M} na qual qual $i: M \mapsto \mathring{M}$ é o mapa inclusão. Introduzindo coordenadas naturais $globais (x^1, ..., x^n)$ para $\mathring{M} \simeq \mathbb{R}^n$ escrevemos $\mathring{g} = \sum_{i,j=1}^n \eta_{ij} dx^i \otimes dx^j \equiv \eta_{ij} dx^i \otimes dx^j$ e equipamos M com a métrica pullback $g := i^*\mathring{g}$. Nós então encontramos a relação entre a conexão de Levi-Civita D de g e \mathring{D} , a conexão de Levi-Civita \mathring{g} . Suporemos que g é não degenerado de assinatura (p,q) com p+q=m.

 $\mathcal{C}\ell(\mathring{M}, \mathring{\mathbf{g}}) \text{ e } \mathcal{C}\ell(M, \mathbf{g}) \text{ denotam respectivamente o fibrado de Clifford de formas diferenciais de } \mathring{M} \text{ e } M^2. \text{ No que segue } \mathring{g} = \sum_{i,j=1}^n \eta^{ij} \frac{\partial}{\partial \boldsymbol{x}^i} \otimes \frac{\partial}{\partial \boldsymbol{x}^j} \equiv \eta^{ij} \frac{\partial}{\partial \boldsymbol{x}^i} \otimes \frac{\partial}{\partial \boldsymbol{x}^j} \text{ é a métrica de fibrado cotangente.}$ O operador de Dirac³ $\mathcal{C}\ell(\mathring{M}, \mathring{\mathbf{g}})$ e $\mathcal{C}\ell(M, \mathbf{g})$ será denotado por⁴ $\mathring{\boldsymbol{\partial}}$ e $\mathring{\boldsymbol{\partial}}$. Tome l = n - m e $\{\mathring{e}_1, \mathring{e}_2, ..., \mathring{e}_m, \mathring{e}_{m+1}, ..., \mathring{e}_{m+l}\}$ uma base ortonormal para $T\mathring{U}$ ($\mathring{U} \subset \mathring{M}$) tal que $\{e_1, e_2, ..., e_m\} = \{\mathring{e}_1, \mathring{e}_2, ..., \mathring{e}_m\}$ é uma base para TU ($U \subset \mathring{U}$) e se $\{\mathring{\theta}^1, \mathring{\theta}^2, ..., \mathring{\theta}^m, \mathring{\theta}^{m+1}, ..., \mathring{\theta}^{m+l}\}$ é a base dual de $\{e_i\}$ teremos que $\{\theta^1, \theta^2, ..., \theta^m\} = \{\mathring{\theta}^1, \mathring{\theta}^2, ..., \mathring{\theta}^m\}$ é uma base para T^*U dual à base $\{e_1, e_2, ..., e_m\}$ de TU. Teremos, como é bem conhecido [12]:

$$\mathring{\boldsymbol{\partial}} = \sum_{i=1}^{n} \mathring{\theta}^{i} \mathring{D}_{\boldsymbol{e}_{i}} = \mathring{\theta}^{i} \mathring{D}_{\boldsymbol{e}_{i}}, \quad \boldsymbol{\partial} = \sum_{i=1}^{m} \theta^{i} D_{\boldsymbol{e}_{i}} = \theta^{i} D_{\boldsymbol{e}_{i}}, \tag{1}$$

Note que usamos os índices sub e sobrescritos em negrito para denotarmo as bases $\{e_i\}$ e $\{\theta^i\}$ do espaço tangente e cotangente de M. Esta notação é convenientemente usada neste trabalho.

A base dual à base coordenada natural $\{\frac{\partial}{\partial \boldsymbol{x}^i}\}$ será denotada no que segue por $\{\gamma^i\}$ onde, $\gamma^i = d\boldsymbol{x}^i$. Além disso, denotaremos por $\{\mathring{e}^1,\mathring{e}^2,...,\mathring{e}^m\}$ a base recíproca de $\{\mathring{e}_i\}$, i.e., $\mathring{\boldsymbol{g}}(\mathring{e}^i,\mathring{e}_j) = \delta^i_j$ e por $\{\mathring{\theta}_i\}$ a base recíproca de $\{\mathring{\theta}^i\}$, i.e., $\mathring{\boldsymbol{g}}(\mathring{\theta}^i,\mathring{\theta}_j) := \mathring{\theta}^i \cdot \mathring{\theta}_j = \delta^i_j$. Também note que para $\mathbf{i}, \mathbf{j} = 1,...,m$ vale $\mathbf{g}(\mathring{\theta}^i,\theta_{\mathbf{j}}) = \mathring{\mathbf{g}}(\mathring{\theta}^i,\mathring{\theta}_j)$. Escreveremos também $\mathbf{g}(\theta^{\mathbf{i}},\theta_{\mathbf{j}}) = \theta^{\mathbf{i}} \cdot \theta_{\mathbf{j}} = \delta^{\mathbf{i}}_{\mathbf{j}}$. A representação do operador de Dirac $\mathring{\boldsymbol{\partial}}$ na base coordenada natural de \mathring{M} é, $\sum_{i=1}^{\mathfrak{n}} \gamma^i \frac{\partial}{\partial \boldsymbol{x}^i} = ^n_{i=1} \mathring{\theta}^i \mathring{D}_{e_i}$. Note que teremos $\mathring{\theta}^{m+1}\Big|_{M} = 0,...,\mathring{\theta}^{m+l}\Big|_{M} = 0$, i.e., para qualquer campo vetorial $\boldsymbol{a} \in \sec TU$ e d = 1,...,l teremos

$$\mathring{\theta}^{m+d}\Big|_{M}(\boldsymbol{a}) = 0.$$

Denotaremos também

$$\mathring{\mathfrak{d}} = \mathring{\partial}\Big|_{M} := \theta^{\mathbf{i}}\theta_{\mathbf{i}} \cdot \mathring{\partial} = \sum_{\mathbf{i}=1}^{m} \theta^{\mathbf{i}} \mathring{D}_{e_{\mathbf{i}}} = \theta^{\mathbf{i}} \mathring{D}_{e_{\mathbf{i}}}$$
(2)

a restrição de $\mathring{\boldsymbol{\partial}}$ na subvariedade M. O operador projeção \mathbf{P} (um campo extensorial⁵) em M, o operador de formato $\mathbf{S} = \mathring{\mathfrak{d}}\mathbf{P}$: $\sec \mathcal{C}\ell(\mathring{M}, \mathring{\mathfrak{g}}) \to \sec \mathcal{C}\ell(M, \mathfrak{g})$ e a biforma de formato da variedade M, \mathcal{S} : $\sec \bigwedge^1 T^*M \to \sec \bigwedge^2 T^*M$, $\mathcal{S}(a) := -(a \cdot \mathfrak{d}I_m)I_m^{-1}$ (onde $\tau_{\boldsymbol{g}} = I_m = \theta^1\theta^2 \cdots \theta^m$ é a forma volume⁶ em $U \subset M$) são objetos fundamentais neste estudo.

¹Por uma subvariedade própria (ou regular [2]) M de \mathring{M} nos referimos a um subconjunto $M \subset \mathring{M}$ tal que para todo $x \in M$ no domínio de uma carta (U, σ) de \mathring{M} tal que $\sigma : \mathring{M} \cap U \to \mathbb{R}^n \times \{1\}$, $\sigma(x) = (x^1, \cdots, x^n, l^1, \cdots, l^{m-n})$, onde $1 \in \mathbb{R}^{n-m}$.

²Para as aplicações do trabalho note que $\bigwedge T^*M = \bigoplus_{r=0}^n \bigwedge^r T^*M \hookrightarrow \mathcal{C}\ell(M, \mathbf{g})$, onde o símbolo \hookrightarrow significa que para cada $x \in M$, $\bigwedge T^*_xM$ (o fibrado das formas diferenciais) está mergulhado em $\mathcal{C}\ell(T^*_xM, \mathbf{g}_x)$ e $\bigwedge T^*_xM \subseteq \mathcal{C}\ell(\bigwedge T^*_xM, \mathbf{g}_x)$.

³Note que o operador de Dirac usado nesse trabalho age em seções do fibrado de Clifford. Não confundir com o operador de Dirac que age em seções do fibrado Espinorial (veja detalhes em [8]). Este último operador pode ser usado para examinar a topologia da brana, como mostrado em [9]

⁴Seguiremos aqui a notação usada em [12]. Aqui, diferentemente das referências [5, 6, 13], usaremos os operadores contrações à esquerda e à direita ⊥ e ∟ e o operador produto escalar (denotado por ·) agindo em seções do fibrado de Clifford. Também nossas convenções para o tensor de Riemann fazem com que algumas equações apareçam com sinais diferentes daquelas aparecendo nas referências já citadas.

⁵Para uma apresentação da teoria dos campos extensoriais, veja, e.g., [12].

 $^{^6}$ A forma volume $\tau_{\tilde{\boldsymbol{\theta}}}$ para $\mathring{U} \subset \mathring{M}$ será denotada por $I_n = \mathring{\boldsymbol{\theta}}^1 \mathring{\boldsymbol{\theta}}^2 \cdots \mathring{\boldsymbol{\theta}}^m$. A forma volume $\tau_{\tilde{\boldsymbol{\theta}}}$ em $\mathring{U} \subset M$ será denotada por $I_n = \mathring{\boldsymbol{\theta}}^1 \mathring{\boldsymbol{\theta}}^2 \cdots \mathring{\boldsymbol{\theta}}^m \mathring{\boldsymbol{\theta}}^{m+1} \cdots \mathring{\boldsymbol{\theta}}^{m+l} = I_m \mathring{\boldsymbol{\theta}}^m \mathring{\boldsymbol{\theta}}^{m+1} \cdots \mathring{\boldsymbol{\theta}}^{m+l}$.

Nos dedicamos a encontrar várias expressões equivalentes para a biforma de curvatura $\Re(u,v)$ em termos do operador de formato. Relembraremos que a ação do quadrado do operador de Dirac ∂ em seções do fibrado de Clifford tem duas decomposições diferentes

$$\partial^2 = -(d\delta + \delta d) = \partial \cdot \partial + \partial \wedge \partial, \tag{3}$$

onde d e δ são respectivamente a derivada exterior e a coderivada de Hodge e $\partial \cdot \partial$, $\partial \wedge \partial$ são respectivamente o Laplaciano covariante e o operador de Ricci. As formas explícitas de $\partial \cdot \partial$ e $\partial \wedge \partial$ são dadas em [12] onde é mostrado que $\partial \wedge \partial$ é um operador extensorial e o resultado notável

$$\partial \wedge \partial \theta^i = \mathcal{R}^i,$$
 (4)

onde os objetos $\mathcal{R}^i=R^i_j\theta^j\in\sec^1T^*M\hookrightarrow\sec\mathcal{C}\ell(\mathring{M},\mathring{\mathbf{g}})$ com R^i_j as componentes do tensor de Ricci associado com D são chamadas de campos de 1-formas de Ricci. Uma das principais propostas deste trabalho é dar uma prova detalhada da notável equação

$$\partial \wedge \partial (v) = -\mathbf{S}^2(v),$$
 (5)

que nos diz que operador de formato é a raiz negativa do operador de Ricci⁷.

2 Sobre os pequenos picos de Clifford

Podemos pensar que do fato de que $\partial \wedge \partial (v) = \mathcal{R}(v) = -\mathbf{S}^2(v)$ quando pensada à luz da Relatividade Geral junto com a teoria de branas nos permite dar uma formalização matemática à intuição de Clifford⁸ apresentada em [3], que diz:

- (1) As pequenas porções do espaço são de fato de uma natureza análoga a pequenos picos em uma superfície na média chata; de forma que as leis ordinárias da geometria não são válidas neles.
- (2) Que esta propriedade de curvatura ou distorção é continuamente passada de uma porção do espaço para outra como uma onda.
- (3) Que esta variação da curvatura do espaço é o que realmente acontece no fenômeno que chamamos de movimento da matéria.
- (4) Que no mundo físico nada mais acontece além dessa variação, sujeito (possivelmente) à leis de continuidade.

Vejamos como proceder. Seja⁹ $(M, \boldsymbol{g}, D, \tau_g, \uparrow)$ um modelo de um campo gravitacional gerado por um tensor energia momento $T^{\mathbf{a}} := T^{\mathbf{a}}_{\mathbf{b}} \theta^{\mathbf{a}} \otimes \theta^{\mathbf{b}}$ descrevendo toda matéria do universo de acordo com a teoria da Relatividade Geral. Como é bem conhecido a equação de Einstein pode ser escrita como

$$\partial \wedge \partial \theta^{\mathbf{a}} = -\mathcal{T}^{\mathbf{a}} + \frac{1}{2}\mathcal{T}\theta^{\mathbf{a}},$$
 (6)

onde $\mathcal{T}^{\mathbf{a}} := T_{\mathbf{b}}^{\mathbf{a}} \theta^{\mathbf{b}}$ and $\mathcal{T} := T_{\mathbf{a}}^{\mathbf{a}}$, com $T_{\mathbf{b}}^{\mathbf{a}}$. Se supusermos que a estrutura (M, \mathbf{g}) é uma subvariedade de $(\mathring{M} \simeq \mathbb{R}^n, \mathring{\mathbf{g}})$ para n grande o suficiente podemos escrever a Eq.(6) como

$$\mathbf{S}^{2}(\theta^{\mathbf{a}}) = \mathcal{T}^{\mathbf{a}} - \frac{1}{2}\mathcal{T}\theta^{\mathbf{a}}.\tag{7}$$

⁷Este resultado aparece (com o sinal positivo no segundo membro da Eq.(5) em [5]. Veja também [13]. Entretanto, leve em conta que os métodos utilizados nestas referências usam a álgebra de Clifford de multivetores e assim, comparações com os resultados lá obtidos com as apresentações padrões de geometria diferencial moderna usando formas diferenciais não são nada óbvias, esta seja provavelmente a razão do porquê desses importantes e bonitos resultados apresentados em [5] foram infelizmente ignorados.

⁸Levando-se em conta, é claro, que diferentemente da ideia de Clifford, ao invés de uma teoria espacial da matéria, precisamos falar numa teoria espaço-tempo da matéria.

 $^{^{9}}$ O símbolo ↑ significa que a variedade Lorentziana (M, g) é orientada no tempo. Detalhes em [12].

Então, numa região onde não há matéria $\mathbf{S}^2(\theta^{\mathbf{a}}) = 0$, apesar do fato de que $\mathbf{S}(\theta^{\mathbf{a}}) = \mathcal{S}(\theta^{\mathbf{a}})$ pode ser $n\tilde{a}o$ nulo. Então, um ser vivendo num hiper-espaço \mathbb{R}^n e olhando para nossa branamundo verá que os pequenos picos (i.e., "matéria") são formatos especiais em M, locais onde $\mathbf{S}^2(\theta^{\mathbf{a}}) \neq 0$.

3 Uma Equação tipo Maxwell para um Brana-Mundo com um Campo Vetorial de Killing

Quando (M, \mathbf{g}) admite um campo vetorial de Killing $\mathbf{A} \in \sec TM$ então segue de [10] que $\delta A = 0$, onde $A = \mathbf{g}(\mathbf{A}, \mathbf{g}) \in \sec^1 T^*M \hookrightarrow \sec \mathcal{C}\ell(M, \mathbf{g})$. Neste caso podemos mostrar que o operador de Ricci aplicado à A é igual a operdor D'Alembertiano covariante aplicado à A, i.e.,

$$\partial \wedge \partial A = \partial \cdot \partial A \tag{8}$$

Agora, com a Eq.(3) na qual o quadrado do operador de Dirac ∂^2 pode ser decomposto de duas maneiras, conseguimos,

$$\partial \wedge \partial A + \partial \cdot \partial A = \partial^2 A = -d\delta A - \delta dA \tag{9}$$

Por fim, escrevendo F=dA e levando em conta que $\delta A=0$ a equação de Einstein pode ser reescrita como

$$\delta F = 2\mathbf{S}^2(A) \tag{10}$$

e desde que dF = ddA = 0 podemos escrever a equação de Einstein como:

$$\partial F = -2\mathbf{S}^2(A). \tag{11}$$

A Eq.(11) nos mostra que numa brana Lorentzian M de dim 4 a qual contém um campo vetorial de Killing A, a equação de Einstein é codificada num "campo tipo eletromagnético" F tendo como fonte uma corrente $J = -2\mathbf{S}^2(A) \in \sec \mathcal{C}\ell(M, \mathbf{g})$.

4 Conclusões

Neste trabalho, damos uma apresentação da geometria de variedades usando o formalismo do fibrado de Clifford, com a esperança de prover uma referência útil para pessoas (que conhecem a teoria de Cartan de formas diferencias)¹⁰ e que estão interessadas na geometria diferencial de subvariedades M de uma variedade $\mathring{M} \simeq \mathbb{R}^n$. Provamos em detalhes diversas expressões equivalentes para a biforma de curvatura $\mathfrak{R}(u \wedge v)$ e além disso provamos que o operador de Ricci $\partial \wedge \partial$ quando aplicado a um campo de 1-formas v é tal que $\partial \wedge \partial$ (v) = $\mathcal{R}(v)$ = $-\mathbf{S}^2(v)$ ($\mathcal{R}(v) = R_{\mathbf{b}}^{\mathbf{a}}\theta_{\mathbf{b}}$) é o negativo do quadrado do operador de formato \mathbf{S} . Mostramos que quando este resultado é aplicado à Relatividade Geral permite nos dar uma realização matemática da teoria de Clifford da matéria. Também mostramos que numa brana Lorentziana contendo um campo de vetores de Killing, a equação de Einstein pode ser codificada numa equação tipo Maxwell cuja fonte é uma corrente dada por $J = 2\mathbf{S}^2(A)$.

Para finalizar observamos que embora alguns (mas não todos) resultados neste trabalho aparecem em [5, 6, 13], nossa metodologia e muitas provas diferem consideravelmente. Usamos o fibrado de Clifford de formas diferenciais $\mathcal{C}\ell(M,\mathbf{g})$ e demos provas detalhadas para todas as fórmulas, deixando claro importantes issues, apresentando, e.g., a relação precisa entre a biforma de formato S avaliada em v (um campo de 1-formas) e o extensor de conexão ω avaliado em v. Em particular, nossa abordagem também generaliza para uma conexão geral de Riemann-Cartan os resultados em [6] os quais são válidos apenas para conexão de Levi-Civita D de uma métrica Lorentziana de assinatura (1,3).

¹⁰Isto inclui pessoas interessadas em teoria de cordas e branas e Relatividade Geral.

Referências

- [1] Becker, K., Becker M., and Schwarz, J., "String Theory and M-Theory", Cambridge Univ. Press, Cambridge, 2007.
- [2] Choquet-Bruhat, Y, DeWitt-Morette, C. and Dillard-Bleick, M., "Analysis Manifold and Physics. Part 1: Basics (revised edition)", North Holland, Amsterdam, 1982.
- [3] Clifford, W. K., On the Space-Theory of Matter, *Proc. Cambridge Phil. Soc.* 2, 157-158 (1864-1876 -Printed 1876).
- [4] Duff, M., M-Theory (The theory Formely Known as Strings), Int. J. Mod. Phys. A 11, (1996) 5623-5642.
- [5] Hestenes, D., and Sobczyk, G., "Clifford Algebra to Geometric Calculus", D. Reidel Publ. Co., Dordrecht, 1984.
- [6] Hestenes, D., Curvature Calcualtions with Spacetime Algebra, Int. J. Theor. Phys. 25, (1986) 581-588.
- [7] Mannhein, P. D., "Brane Localized Gravity", World Sci. Publ. Co., Singapore (2005).
- [8] Notte-Cuello, E., Rodrigues, W. A. Jr, and Q. A. G. de Souza, The Square of the Dirac and spin-Dirac Operators on a Riemann-Cartan Space(time), *Rep. Math. Phys.* 60, (2007) 135-157.
- [9] da Rocha, R., Bernardini, A. E., and Hoff da Silva, J. M., Exotic Dark Spinor Fields, *JHEP* 4, article:110 [arXiv:1103.4759] [hep-th] (2011).
- [10] Rodrigues, W. A. Jr., Killing Vector Fields, Maxwell Equations and Lorentzian Spacetimes, Adv. Appllied. Clifford Algebras 20, (2010) 871-884.
- [11] Rodrigues, W. A. Jr., Wainer, S. A., A Clifford Bundle Approach to the Differential Geometry of Branes, Advances in Applied Clifford Algebras 24, (2014) 617-847.
- [12] Rodrigues, W. A. Jr. and Capelas de Oliveira, E., "The Many Faces of Maxwell Equations. A Clifford Bundle Approach", Lecture Notes in Physics 722, Springer, Heildeberg, 2007. Errata and preliminary version of a second edition at http://www.ime.unicamp.br/~walrod/recentes.htm
- [13] Sobczyk, G., Conformal Mappings in Geometric Algebra, Not. Am. Math. Soc. 59, (2012) 264-273.