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De forma geral, a Série de Taylor de uma função f(x) é dada por:

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · . (1)

E para o caso especial em que a = 0, a Série de Taylor torna-se a Série de Maclaurin:

f(x) =
∞∑

n=0

f (n)(0)

n!
xn = f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 + · · · . (2)

Os polinômios de Taylor Tn(x) que se aproximam da função f(x) são tais que:

Tn(x) =

n∑
i=0

f (i)(a)

i!
(x− a)i = f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ fn(a)

n!
(x− a)n. (3)

Segundo [2], existe um raio de convergência que define a região onde a série converge:

Teorema. Para dada série de potências
∞∑

n=0

cn · (x− a)n, existem apenas três possibilidades:

(I) A série converge apenas quando x = a

(II) A série converge para todo x

(III) Existe um número positivo R tal qual a série converge se |x − a| < R e diverge se
|x− a| > R.

O valor R é o raio de convergência, que possibilita determinar o intervalo de convergência da
série. Esse intervalo é delimitado pelo centro a, com uma extensão de R para a esquerda e para a
direita. Assim, os limites do intervalo de convergência podem ser obtidos subtraindo e somando R
ao valor de a, garantindo que todos os valores dentro do intervalo (a−R, a+R), também pertençam
à região de convergência. Para determinar R, pode-se utilizar o teste da razão que é dado por:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L. (4)

E pelo teste da raiz:
lim
n→∞

n
√
an = L. (5)
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Os testes podem falhar ao analisar as extremidades do intervalo de convergência. E neste caso é
necessário utilizar outro método que consiste em substituir os valores das extremidades, eliminando
o termo x e transformando a expressão em outro tipo de série. Se a nova série convergir, então a
série original também converge nesse extremo. Assim:

Substitua x = x0 −R na série:
∞∑

n=0

an(x0 −R− x0)
n =

∞∑
n=0

an(−R)n. (6)

Substitua x = x0 +R na série:
∞∑

n=0

an(x0 +R− x0)
n =

∞∑
n=0

anR
n. (7)

As séries de potência são ferramentas de expansão de funções para torná-las mais simples de
serem analisadas. As séries de Taylor e Maclaurin, têm inúmeras aplicações em diversas áreas
da ciência, como a Física e a Computação. Têm extrema relevância na representação de funções,
permitindo obter aproximações rápidas e eficazes com apenas alguns termos.

Como aplicação computacional desses conceitos, construiu-se no GeoGebra um modelo mate-
mático em que foi possível visualizar a rápida convergência da Série de Maclaurin correspondente
à função seno, como pode ser visto na Figura 1, cuja simulação computacional está disponível
em [1]. Para isso, utilizou-se comandos do GeoGebra, adicionando controles deslizantes que per-
mitem ajustar o número de termos da série, mostrando que é possível representar valores muito
próximos da função exata, comprovando a eficiência dessa metodologia.

Figura 1: Aplicação da Série de Maclaurin. Fonte: Figura do Autor.
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