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Since Feynman’s influential work [2], quantum computing has developed into a robust com-
putational paradigm, offering new approaches to problems that challenge the limits of classical
systems. This potential is exemplified by two cornerstone algorithms. Shor’s algorithm [7] revo-
lutionizes integer factorization, reducing its complexity from sub-exponential, as achieved by the
best classical methods, to polynomial time. Similarly, Grover’s algorithm [3] offers a quadratic
speedup for searching unstructured databases, decreasing the complexity from O(N) to O(V/N).
This efficiency gain is achieved through the amplification of amplitudes for "marked" states, mak-
ing them more likely to be measured. Grover’s algorithm is particularly versatile, enabling the
reformulation of numerous problems as search tasks, thereby broadening its scope of application
across various fields.

Quantum computing operates on principles of quantum mechanics, utilizing quantum bits
(qubits) as the fundamental units of information [5]. A qubit is described by a superposition
state:
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where a, 3 € C and |a|? + |5|?> = 1. Quantum operations are represented by unitary matrices
acting on these states, and measurement collapses the qubit to one of the basis states |0) or |1), with
probabilities |a|? and |3|?, respectively. The tensor product of individual qubit states describes
multi-qubit systems. For n qubits, the state is represented as:
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which lies in a 2”-dimensional Hilbert space. This high-dimensional space enables quantum
oracles to act on superpositions of many states simultaneously. In Grover’s algorithm, the oracle
uses this property to evaluate multiple solutions in parallel, using a combination of phase inversion
and diffusion operations to amplify the probability of measuring desired solutions, achieving a
quadratic speedup over classical search methods.

One application of Grover’s algorithm lies in ray tracing [8], a widely used technique in com-
puter graphics to compute intersections of rays with objects in three-dimensional scenes. Classical
ray tracing has O(NN) complexity concerning the number of geometric primitives in the scene,
where N represents the primitives to be tested for intersection. By integrating Grover’s algorithm
with quantum minimization methods [1], it is possible to achieve a quadratic speedup, reducing
the complexity to O(v/N). This improvement significantly impacts performance for large-scale
geometric models.

The objective of this work is to implement a quantum ray tracing solution using Grover’s
algorithm, inspired by [6]. This involves constructing quantum circuits for oracles, describing their
mathematical structure rigorously, and demonstrating the feasibility of the approach through a
proof of concept. Key components involve defining matrix representations of quantum operators,
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developing appropriate circuits to compute intersections, and designing the oracles necessary for
implementing the quantum minimum finding algorithm.

The implementation is designed using the Qiskit framework [4], ensuring accessibility and repro-
ducibility. The source code will be made publicly available to encourage extensions and adaptations
for future research in quantum computing and computer graphics.
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