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Seja G = (V, E) um grafo conexo simples e f : E — {1,2,...,|E|} uma bijegdo. Para cada
v €V, o peso de v é dado por f+(v) = > cer(w J(€), onde E(v) denota o conjunto das arestas
incidentes em v. Quando f*(v) # f*(u) para todo par de vértices distintos v,u € V, a bije¢ao
f € denominada rotulacao antimagica de G. Se uma tal rotulacao existir, G é dito grafo
antiméagico. Em 1990, Hartsfield e Ringel [3] introduziram o conceito de rotulagdo antiméagica
de um grafo e conjecturaram que todo grafo conexo, com excecao do grafo completo Ky, é um
grafo antimagico. Desde entao, a conjectura tem recebido muita atengao, e foi provada para varias
familias especiais de grafos. Entretanto, a conjectura ainda nao foi resolvida, mesmo para algumas
familias de grafos particularmente simples, como arvores.

Em 2017, Aramugan et al. [1] introduziram o conceito de rotulacdo antimagica local de
um grafo G como uma versdo local do conceito de rotulagdo antiméagica de Hartsfield e Ringel,
para o caso em que f1(v) # f*(u) para cada par de vértices adjacentes em G. Um grafo que
admite tal rotulagao é chamado grafo antimagico local. Ambos os grupos conjecturaram que
todo grafo conexo, exceto Ky, é um grafo antimagico local. Tal conjectura foi provada, em 2018,
por Haslegrave [4] usando métodos probabilisticos.

Qualquer rotulagao antimagica local induz uma rotulagao propria dos vértices de G onde o peso
do vértice f*(u) é o rétulo de u. Esse fato conduz naturalmente ao conceito de ntimero cromético
antimagico local, introduzido em [1]. O nimero cromatico antimagico local, x;,(G), é definido
como o nimero minimo de rétulos obtidos entre todas as rotulagoes de vértices induzidas por
rotulagbes antimégicas locais de G.

Seja T uma arvore de ordem n > 3 com ¢ folhas. Os autores em [1] mostraram que £ + 1 <
Xia(T). Além disso, foi conjecturado em [2] que, para qualquer arvore T com ¢ folhas, vale
Xia(T) € {€+ 1,¢+ 2}. Motivados por essa conjectura, investigamos o problema em uma familia
especifica de arvores, as duplas vassouras. Essa familia combina simplicidade estrutural com uma
assimetria controlada, oferecendo um cenario adequado para examinar a conjectura.

Dado um par de inteiros positivos p; e po, definimos uma dupla vassoura de didmetro d > 1
como a arvore obtida a partir do caminho Py_; = (wqwsg---wq—1), ao qual sdo adicionadas p; e
po folhas nos vértices wy e wy_1, respectivamente. Denotamos essas arvores por Bgl pa-

Neste trabalho, construimos rotulagoes antimagicas locais para as duplas vassouras de didmetros
3 e 4 e determinamos expressoes para o nimero cromatico antimagico local em cada caso. Tais
resultados indicam que a variagao de x;, depende de forma sutil da interagao entre p; e ps, revelando
limiares quadraticos que sugerem fendmenos anélogos em familias mais gerais de arvores. A seguir,
enunciamos parte dos resultados obtidos.
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Teorema 1. Se p; e py sdo inteiros tais que 1 < p; < po, entdo

3 p1+Dp2+ 2, S€p1=P2220UP2<w;

Xta(B =
a( P17P2) {pl +p2+1, seps > w

Teorema 2. Seja p um inteiro positivo par. Se p > 4, entio Xla(Bf,,p) =2p+2.

_ Yy
Teorema 3. Sejam py e py inteiros tais que po — 1 > p1 > 3, e seja ¥ = {WJ .

(Z) Se py > (1’1_1)2&} entao X[a(Béhpz) =p +ps+ 1.

(ii) Se pa < (m*l)zw er e {1,2}, entao

(B )y =P +p2+1, se ps <t e pi+pr=r(modd);
aNTP1p2 p1+p2+2, caso contrdrio.

A Figura 1 ilustra a dupla vassoura Bj , e apresenta uma rotulagio antimagica local com os
respectivos pesos de vértices induzidos. De acordo com o Teorema 3 tem-se x;,(B3 ) = 9.

Figura 1: Dupla vassoura Bj , com xiq(Bj 4) = 9. Fonte: Autor
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