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Seja G = (V,E) um grafo conexo simples e f : E → {1, 2, . . . , |E|} uma bijeção. Para cada
v ∈ V , o peso de v é dado por f+(v) =

∑
e∈E(v) f(e), onde E(v) denota o conjunto das arestas

incidentes em v. Quando f+(v) ̸= f+(u) para todo par de vértices distintos v, u ∈ V , a bijeção
f é denominada rotulação antimágica de G. Se uma tal rotulação existir, G é dito grafo
antimágico. Em 1990, Hartsfield e Ringel [3] introduziram o conceito de rotulação antimágica
de um grafo e conjecturaram que todo grafo conexo, com exceção do grafo completo K2, é um
grafo antimágico. Desde então, a conjectura tem recebido muita atenção, e foi provada para várias
famílias especiais de grafos. Entretanto, a conjectura ainda não foi resolvida, mesmo para algumas
famílias de grafos particularmente simples, como árvores.

Em 2017, Aramugan et al. [1] introduziram o conceito de rotulação antimágica local de
um grafo G como uma versão local do conceito de rotulação antimágica de Hartsfield e Ringel,
para o caso em que f+(v) ̸= f+(u) para cada par de vértices adjacentes em G. Um grafo que
admite tal rotulação é chamado grafo antimágico local. Ambos os grupos conjecturaram que
todo grafo conexo, exceto K2, é um grafo antimágico local. Tal conjectura foi provada, em 2018,
por Haslegrave [4] usando métodos probabilísticos.

Qualquer rotulação antimágica local induz uma rotulação própria dos vértices de G onde o peso
do vértice f+(u) é o rótulo de u. Esse fato conduz naturalmente ao conceito de número cromático
antimágico local, introduzido em [1]. O número cromático antimágico local, χla(G), é definido
como o número mínimo de rótulos obtidos entre todas as rotulações de vértices induzidas por
rotulações antimágicas locais de G.

Seja T uma árvore de ordem n ≥ 3 com ℓ folhas. Os autores em [1] mostraram que ℓ + 1 ≤
χla(T ). Além disso, foi conjecturado em [2] que, para qualquer árvore T com ℓ folhas, vale
χla(T ) ∈ {ℓ + 1, ℓ + 2}. Motivados por essa conjectura, investigamos o problema em uma família
específica de árvores, as duplas vassouras. Essa família combina simplicidade estrutural com uma
assimetria controlada, oferecendo um cenário adequado para examinar a conjectura.

Dado um par de inteiros positivos p1 e p2, definimos uma dupla vassoura de diâmetro d > 1
como a árvore obtida a partir do caminho Pd−1 = (w1w2 · · ·wd−1), ao qual são adicionadas p1 e
p2 folhas nos vértices w1 e wd−1, respectivamente. Denotamos essas árvores por Bd

p1,p2
.

Neste trabalho, construímos rotulações antimágicas locais para as duplas vassouras de diâmetros
3 e 4 e determinamos expressões para o número cromático antimágico local em cada caso. Tais
resultados indicam que a variação de χla depende de forma sutil da interação entre p1 e p2, revelando
limiares quadráticos que sugerem fenômenos análogos em famílias mais gerais de árvores. A seguir,
enunciamos parte dos resultados obtidos.
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Teorema 1. Se p1 e p2 são inteiros tais que 1 ≤ p1 ≤ p2, então

χla(B
3
p1,p2

) =

{
p1 + p2 + 2, se p1 = p2 ≥ 2 ou p2 <

p1(p1+1)
2 ;

p1 + p2 + 1, se p2 ≥ p1(p1+1)
2 .

Teorema 2. Seja p um inteiro positivo par. Se p ≥ 4, então χla(B
4
p,p) = 2p+ 2.

Teorema 3. Sejam p1 e p2 inteiros tais que p2 − 1 ≥ p1 ≥ 3, e seja ψ =

⌊
2p1−5+

√
8p2

1+17

2

⌋
.

(i) Se p2 ≥ (p1−1)(p1+2)
2 , então χla(B

4
p1,p2

) = p1 + p2 + 1.

(ii) Se p2 <
(p1−1)(p1+2)

2 e r ∈ {1, 2}, então

χla(B
4
p1,p2

) =

{
p1 + p2 + 1, se p2 ≤ ψ e p1 + p2 ≡ r (mod4);

p1 + p2 + 2, caso contrário.

A Figura 1 ilustra a dupla vassoura B4
3,4 e apresenta uma rotulação antimágica local com os

respectivos pesos de vértices induzidos. De acordo com o Teorema 3 tem-se χla(B
4
3,4) = 9.
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Figura 1: Dupla vassoura B4
3,4 com χla(B

4
3,4) = 9. Fonte: Autor
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