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Resumo. Motivados pelo deslocamento de espuma em meios porosos com adsorcao linear, esten-
demos trabalhos ja existentes para o escoamento bifasico contendo um tragador ativo descrito por
um sistema de leis de conservagao nao estritamente hiperboélico. Classificamos as solugdes no plano
de fase contendo todos os possiveis estados & esquerda e a direita conectados por uma sequéncia de
ondas compativeis. Destacamos que existem regioes de pardmetros onde mais de uma sequéncia de
ondas compativeis ocorre. Mostramos que o modelo implementado no CMG-STARS, descrevendo o
deslocamento de espuma em meios porosos com adsor¢ao, satisfaz as propriedades necesséarias para
aplicar a teoria desenvolvida. Apresentamos regides de parametros onde o modelo do CMG-STARS
possui uma falta de unicidade da solucao no plano de fase, levando a uma perda de estabilidade
estrutural. Mostramos também que este modelo é bem-posto no sentido de Hadamard, podendo
apresentar oscilagdes devido a perda de estabilidade estrutural. Descrevemos o bando de surfac-
tante como uma sequéncia de dois problemas de Riemann, determinamos cenérios onde a espuma
apresenta um melhor desempenho e avaliamos o impacto da adsorgao.

Palavras-chave. Problema de Riemann. Meio Poroso. Leis de Conservagao. Espuma.

1 Introducao

O objetivo deste trabalho é investigar o banco de surfactante para a recuperagao avancgada
de petroleo (Enhanced Oil Recovery - EOR). Neste estudo, descrevemos o banco de surfactante
como uma imbibigdo seguida por uma drenagem para formagao de espuma. Para descrever esses
processos, adotamos um sistema de leis de conservacao considerando a adsorcao linear do quimico
na rocha. Os processos de drenagem e imbibigao podem ser descritos por problemas de Riemann
associados ao sistema de leis de conservagao, motivando a obtencao da solugao global do problema
de Riemann. Utilizamos a funcéo de fluxo fracionério implementada no simulador comercial CMG-
STARS, que descreve a textura da espuma em equilibrio local como fun¢do do quimico. Avaliamos
o impacto da adsor¢do do surfactante na rocha porosa durante o banco de surfactante. Este
trabalho foi motivado pelo interesse da industria de petroleo em determinar a menor quantidade
de quimico/surfactante necesséria para evitar a formacao de wiscous fingering e a avaliagdo da
influéncia da adsorcao no banco de surfactante.

Podemos definir métodos de EOR como a inje¢do de materiais que normalmente nao estao
presentes no reservatorio. Podemos destacar como métodos de EOR a injecao de gas [19], a injec¢ao
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térmica como combustao in-situ [3, 7], e a inje¢do quimica como a injegao de polimero [14-16] ou
a injecao de espuma [8, 10, 12, 18]. Essa tltima é tratada neste trabalho.

Utilizagdo de injegdo de gas para EOR possui alta eficiéncia, porém é reduzida devido a he-
terogeneidade do reservatorio, gradientes gravitacionais e instabilidades. O uso de espumas pode
ajudar na solugdo de todos os trés problemas encontrados na varredura do gas [2]. O uso apro-
priado de espumas para EOR resulta em uma significativa reducao da mobilidade da fase gasosa.
Dessa forma, uma grande parcela da espuma fica presa no meio poroso, resultando em um desvio
de uma parte do fluido subsequente para uma camada com permeabilidade mais baixa ou saturagao
de 6leo mais alta, levando a uma melhor varredura da espuma por todo o meio poroso [18§].

Tipicamente, a espuma é estavel na presenga de surfactantes. Apoés a injecao de uma solugao
contendo surfactante no meio poroso, ocorre o processo de adsor¢ao do surfactante, em que suas
moléculas se instalam nas paredes do meio poroso. Tais perdas tém potencial de desestabilizar a
espuma, além de poderem tornar o processo economicamente inviavel [6]. Portanto, é vital entender
como o processo de adsor¢ao evolui durante o EOR para determinar sob quais condigdes a espuma
se mantém durante toda a injegao.

Este trabalho esté organizado como segue. O problema de Riemann para o deslocamento de
espuma é apresentado na Secao 2. Na Secao 3 discutimos as propriedades da fungao de fluxo
fracionario. Na Secdo 4 apresentamos o modelo implementado no simulador CMG-STARS. Na
Secao 5 construimos a solugdo do problema de Riemann. Na Segdo 6 apresentamos como obter o
banco de surfactante 6timo. Na Secao 7 apresentamos os resultados deste trabalho.

2 Modelo do Transporte de Espuma em Meios Porosos com
Adsorcgao Linear do Surfactante

Durante este trabalho, supomos: meio poroso homogéneo, fluxo bifasico de agua e gas, fluxo
unidimensional, viscosidades Newtonianas, auséncia de gradiente de pressao capilar, efeitos gra-
vitacionais despreziveis, auséncia do fenémeno de dispersdo, fases incompressiveis, auséncia de
viscous fingering e que atingimos imediatamente o comportamento de equilibrio local. Sob essas
hipéteses, é possivel descrever nosso problema através do seguinte sistema de leis de conservagao

S+ 0, f(S,C) =0, (1)
0 [(S+ A)CT+ 0, [f(S,C)C] =0, (2)

onde S é a saturagao agua, f é a funcao de fluxo fracionario da agua, C' é a concentragao de
surfactante na dgua e A é uma constante, dada por

_ 1 (1 —9)ps K
N 1- ch - Sgr (ch M pw(b ’

onde Sy, € a saturacao de dgua conata, S,, ¢ a saturagao de dleo residual, ¢ é a porosidade, p,
¢ a densidade da agua, ps ¢ a densidade da rocha e K é conhecido como o coeficiente de Henry,
que representa a fragao do surfactante adsorvido na rocha.

De agora em diante, estudamos o problema de Riemann do sistema (1)-(2) considerando o
seguinte dado inicial

A (3)

R "

3 Propriedades da Funcao de Fluxo Fracionario

Neste trabalho, supomos que a fungao de fluxo fracionario f satisfaz as seguintes propriedades:
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a) A fungao f € C?, f(0,C) =0 e f(1,C) = 1 para todo C € [0,1]. Além disso, dsf(0,C) =
0=0sf(1,C) para cada C.

b) Para cada C, f,(S,C) é estritamente crescente em relagdo a S com um unico ponto de
inflexdo, que denotaremos por S*, onde a derivada segunda de f com respeito a S é positiva
a esquerda de S*, e negativa a direita de S*.

¢) A derivada parcial d¢ f(S,C) > 0, para S e C no dominio fisico.

Tais hipoteses sdo anélogas as adotadas nos trabalhos [14-16], onde se considerou que f é uma
fungao decrescente em relagdo a C'. Embora essa diferenga seja consequéncia da diferente fisica
representada, podemos recair em um cenério préximo através da mudanca de varidvel C =1 — C,
onde a diferenca permanece devido & presenga da constante 4. Com essas propriedades, para C
constante, temos que o sistema (1)-(2) se reduz a equagao de Buckley-Leverett [5].

4 Modelo CMG-STARS

Nesta secao, apresentamos o modelo de espuma em equilibrio implementado no simulador
CMG-STARS [1], que sera utilizado durante esse trabalho.
O efeitos da espuma sao representados através o termo de reducao de mobilidade, F'M, dado
por
FM(S,C) = (1+ fmmob F1(C) - F5(S))™", (5)

onde fmmob representa o fator de reducao de mobilidade de referéncia (se esse parametro é zero,
nao temos espuma). A funcao F» representa os efeitos da saturagao da agua:

F5(S) = 0.5+ (arctan (epdry((1 — Swe — Sgr)S + Swe — fmdry))) /=, (6)

onde fmdry é a saturacdo critica da agua e epdry representa o declive dos efeitos de secagem. A
funcdo F; descreve os efeitos da concentracao de surfactante, dada por

Cmaw C epsurf
F(C) = <fmsurf> , se Char C < fmsurf, (7)
1, se Crae C > fmsurf,

onde fmsurf é a concentracao critica de surfactante e epsurf um expoente.
A funcao de fluxo fracionério é dada por

[(5,C) = krw(S)/ (krw (S) + (b /119 kirg (S) - FM (S, C))) , (8)

onde k., € kg s@o as permeabilidades relativas da agua e do gas (seguindo o modelo Brooks-Corey
[4]) respectivamente, e p,, e fi, s20 as viscosidades da agua e do gas. Em [11], fol mostrado que
este modelo satisfaz as propriedades apresentadas na Sec¢ao 3, adotando parametros da Tabela 1
de [11]. Dessa forma, podemos aplicar a teoria apresentada a seguir ao modelo de espuma em
equilibrio implementado no simulador CMG-STARS.

5 Solucao do Problema de Riemann

Nesta secao investigamos o problema de Riemann (1)-(2) e (4). A construcao da solucao global
pode ser encontrada com maiores detalhes em [11]. Reescrevendo o sistema na forma geral

U, + A(U)U, =0, 9)
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onde a matriz A(U) é dada por

aw) = %7 ; /(‘Z,CI e (10)

Os autovalores e autovetores associados & matriz A(U) sao:

/\S - aS'fa T’S:(l,O)T, (11)
A IS+ A),  ro=0cf f/(S+A) —dsf)". (12)

Para cada C fixo, existe um tnico S* = S*(C) tal que
As(87,C) = Ac (57, C). (13)

Nos pontos (S*, C') a matriz A ndo é diagonalizavel. Similar ao feito em [14-16], podemos classificar
o plano de fase em fungao da sequéncia de ondas que compoem a solucao, resolvendo globalmente
o problema de Riemann (1)-(2) e (4).

Notamos que existem condigoes iniciais nas quais mais de uma sequéncia de onda é possivel.
Estudando o comportamento dessas solugoes, observamos que dependem continuamente dos dados
iniciais e sao unicas adotando a norma do espago LP para p € N. Concluimos assim que o problema
de Riemann estudado é bem-posto no sentido de Hadamard. Apesar disso, pequenas mudancas
nas condigoes iniciais podem resultar em solugoes qualitativamente diferentes, indicando que o
problema de Riemann possui instabilidades estruturais [13, 20] nos conjuntos de parametros onde ha
perda de unicidade. A Fig. 1 apresenta um exemplo da mudanca qualitativa do perfil da saturagao
de dgua para pequenas variagoes de Ur no cenario onde ha perda de unicidade. Essas solugoes
foram obtidas numericamente pelo Solver Reaction Convection Diffusion Equations (RCD).
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x

Figura 1: Perfis da saturacao da agua no tempo t = 3 para o estado a esquerda Uy, = (0.15,0.4) e
estados a direita proximos: Ug_ = (0.360,0.7273) e Ur4 = (0.367,0.7273). Fonte: [9].

6 Banco de Surfactante Otimo

Nesta secao, estudamos o banco de surfactante e como melhorar seu desempenho na varredura
do meio poroso. Como estamos interessados na formagao de espuma in-situ, consideramos o banco
de surfactante como um processo de imbibi¢ao (RP;) seguido por um processo de drenagem (RP,),
conforme a Fig. 2. Denotamos por U} e U} as condigoes iniciais do RPy, U7 e U as condigdes
iniciais do RP,. A velocidade da frente do gés v, é dada pela velocidade final do RPs, e a velocidade
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Figura 2: Representagdo esquematica dos problemas de Riemann RP; e RP». Fonte: [9].

da frente do surfactante v, é a velocidade do contato de RP;. Visamos determinar condigoes para
otimizar o desempenho da espuma e o impacto da adsorcao.

Adotando S? = 1073, C% =0, S% = S} = 0.9999, C; = C% > 0 e Cy = 0, a solugao de
RP, é dada por uma sequéncia de contato, rarefa¢do e choque respectivamente. A velocidade da
frente do gés é a velocidade do ultimo choque. Ja a imbibigdo pode ter a solu¢do composta por
duas ou trés ondas, dependendo da escolha de S}z. Estudando ambos os casos e as respectivas
velocidades finais, concluimos que SL = S} resulta no cenério em que o encontro da frente do gés
e do surfactante é adiado.

Para estudar a melhor concentragao de surfactante a ser utilizada, introduzimos o tamanho do
banco de surfactante, expresso por:

Tsurf = 1/ve — 1/vg. (14)

O tamanho do banco de surfactante representa o menor tempo de injecao de agua com surfactante
necessario para garantir que a frente do gés nao ultrapasse a frente do surfactante. O painel
esquerdo da Fig. 3 mostra o tamanho do banco de surfactante em fungio da concentragio Cfi.
Notamos que a redugao em Ty, s é significativa para valores mais baixos de C, onde a partir de
C = 0.2 nao ha grandes mudancgas. Visando utilizar uma concentragao que apresenta uma boa
redugio no tamanho do banco de surfactante sem grandes adigdes de custo, adotamos C1 = 0.1.

Finalmente, investigamos o impacto que a constante de adsor¢ao tem no tamanho do banco de
surfactante. O painel direito da Fig. 3 representa o tamanho do banco de surfactante em funcgao de
K§ variando de 0 a 1. Aumentar o valor de K§ implica em uma maior quantidade de surfactante
adsorvida, reduzindo a concentragao de surfactante. Isso resulta em uma alteragao da velocidade do
gas e do surfactante, que dependem fortemente do valor de C. Conforme apresentado na Eq. (14),
isso resulta na alteracdo no tamanho do banco de surfactante.

7 Conclusoes

Motivados pelo deslocamento de espuma em meio porosos com adsor¢ao linear do surfactante,
estendemos cenarios jé existentes para o fluxo bifasico contendo um tragador ativo descrito por um
sistema de leis de conservagao nao estritamente hiperbolico. Resolvemos o problema de Riemann
global, obtendo conjuntos onde ha perda da unicidade da solucao. Investigamos os casos onde
a solugdo ndo é tnica, concluindo que o problema é bem-posto. Apesar disso, para parametros
nos conjuntos onde temos a perda de unicidade, pequenas variagoes no estado Ug resulta em
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Figura 3: O painel esquerdo apresenta o tamanho do banco de surfactante em fungao da concen-
tragao de surfactante. O painel direito, o tamanho do banco de surfactante em fungdo de K.
Fonte: [9].

solugbes qualitativamente diferentes, refletindo a perda de estabilidade estrutural do problema.
Verificamos que o modelo implementando no simulador comercial CMG-STARS possui regioes
de parametros onde as hipoteses adotadas neste trabalho sao satisfeitas. Dessa forma, existem
regioes de parametros onde o modelo do CMG-STARS é estruturalmente instével, podendo resultar
em oscilagbes numéricas. Estudamos o banco de surfactante, composto pela sequéncia de dois
problemas de Riemann. Nossos resultados apontam que o banco de surfactante 6timo é alcancado
para baixas concentragoes, indicando que o modelo de adsorgao linear é adequado nesse cenério
[17]. Finalmente, analisamos o impacto da adsor¢ao no banco de surfactante, onde foi possivel
descrever o tempo de inje¢ao do surfactante em funcao da constante Henry.
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