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Resumo. Motivados pelo deslocamento de espuma em meios porosos com adsorção linear, esten-
demos trabalhos já existentes para o escoamento bifásico contendo um traçador ativo descrito por
um sistema de leis de conservação não estritamente hiperbólico. Classificamos as soluções no plano
de fase contendo todos os possíveis estados à esquerda e à direita conectados por uma sequência de
ondas compatíveis. Destacamos que existem regiões de parâmetros onde mais de uma sequência de
ondas compatíveis ocorre. Mostramos que o modelo implementado no CMG-STARS, descrevendo o
deslocamento de espuma em meios porosos com adsorção, satisfaz as propriedades necessárias para
aplicar a teoria desenvolvida. Apresentamos regiões de parâmetros onde o modelo do CMG-STARS
possui uma falta de unicidade da solução no plano de fase, levando a uma perda de estabilidade
estrutural. Mostramos também que este modelo é bem-posto no sentido de Hadamard, podendo
apresentar oscilações devido à perda de estabilidade estrutural. Descrevemos o bando de surfac-
tante como uma sequência de dois problemas de Riemann, determinamos cenários onde a espuma
apresenta um melhor desempenho e avaliamos o impacto da adsorção.

Palavras-chave. Problema de Riemann. Meio Poroso. Leis de Conservação. Espuma.

1 Introdução

O objetivo deste trabalho é investigar o banco de surfactante para a recuperação avançada
de petróleo (Enhanced Oil Recovery - EOR). Neste estudo, descrevemos o banco de surfactante
como uma imbibição seguida por uma drenagem para formação de espuma. Para descrever esses
processos, adotamos um sistema de leis de conservação considerando a adsorção linear do químico
na rocha. Os processos de drenagem e imbibição podem ser descritos por problemas de Riemann
associados ao sistema de leis de conservação, motivando a obtenção da solução global do problema
de Riemann. Utilizamos a função de fluxo fracionário implementada no simulador comercial CMG-
STARS, que descreve a textura da espuma em equilíbrio local como função do químico. Avaliamos
o impacto da adsorção do surfactante na rocha porosa durante o banco de surfactante. Este
trabalho foi motivado pelo interesse da indústria de petróleo em determinar a menor quantidade
de químico/surfactante necessária para evitar a formação de viscous fingering e a avaliação da
influência da adsorção no banco de surfactante.

Podemos definir métodos de EOR como a injeção de materiais que normalmente não estão
presentes no reservatório. Podemos destacar como métodos de EOR a injeção de gás [19], a injeção
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térmica como combustão in-situ [3, 7], e a injeção química como a injeção de polímero [14–16] ou
a injeção de espuma [8, 10, 12, 18]. Essa última é tratada neste trabalho.

Utilização de injeção de gás para EOR possui alta eficiência, porém é reduzida devido à he-
terogeneidade do reservatório, gradientes gravitacionais e instabilidades. O uso de espumas pode
ajudar na solução de todos os três problemas encontrados na varredura do gás [2]. O uso apro-
priado de espumas para EOR resulta em uma significativa redução da mobilidade da fase gasosa.
Dessa forma, uma grande parcela da espuma fica presa no meio poroso, resultando em um desvio
de uma parte do fluido subsequente para uma camada com permeabilidade mais baixa ou saturação
de óleo mais alta, levando a uma melhor varredura da espuma por todo o meio poroso [18].

Tipicamente, a espuma é estável na presença de surfactantes. Após a injeção de uma solução
contendo surfactante no meio poroso, ocorre o processo de adsorção do surfactante, em que suas
moléculas se instalam nas paredes do meio poroso. Tais perdas têm potencial de desestabilizar a
espuma, além de poderem tornar o processo economicamente inviável [6]. Portanto, é vital entender
como o processo de adsorção evolui durante o EOR para determinar sob quais condições a espuma
se mantém durante toda a injeção.

Este trabalho está organizado como segue. O problema de Riemann para o deslocamento de
espuma é apresentado na Seção 2. Na Seção 3 discutimos as propriedades da função de fluxo
fracionário. Na Seção 4 apresentamos o modelo implementado no simulador CMG-STARS. Na
Seção 5 construímos a solução do problema de Riemann. Na Seção 6 apresentamos como obter o
banco de surfactante ótimo. Na Seção 7 apresentamos os resultados deste trabalho.

2 Modelo do Transporte de Espuma em Meios Porosos com
Adsorção Linear do Surfactante

Durante este trabalho, supomos: meio poroso homogêneo, fluxo bifásico de água e gás, fluxo
unidimensional, viscosidades Newtonianas, ausência de gradiente de pressão capilar, efeitos gra-
vitacionais desprezíveis, ausência do fenômeno de dispersão, fases incompressíveis, ausência de
viscous fingering e que atingimos imediatamente o comportamento de equilíbrio local. Sob essas
hipóteses, é possível descrever nosso problema através do seguinte sistema de leis de conservação

∂tS + ∂xf(S,C) = 0, (1)
∂t [(S +A)C] + ∂x [f(S,C)C] = 0, (2)

onde S é a saturação água, f é a função de fluxo fracionário da água, C é a concentração de
surfactante na água e A é uma constante, dada por

A =
1

1− Swc − Sgr

(
Swc +

(1− ϕ)ρsK
a
d

ρwϕ

)
, (3)

onde Swc é a saturação de água conata, Srg é a saturação de óleo residual, ϕ é a porosidade, ρw
é a densidade da água, ρs é a densidade da rocha e Ka

d é conhecido como o coeficiente de Henry,
que representa a fração do surfactante adsorvido na rocha.

De agora em diante, estudamos o problema de Riemann do sistema (1)-(2) considerando o
seguinte dado inicial

(S(x, 0), C(x, 0)) =

{
(SL, CL), se x < 0,
(SR, CR), se x ≥ 0.

(4)

3 Propriedades da Função de Fluxo Fracionário
Neste trabalho, supomos que a função de fluxo fracionário f satisfaz as seguintes propriedades:
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a) A função f ∈ C2, f(0, C) = 0 e f(1, C) = 1 para todo C ∈ [0, 1]. Além disso, ∂Sf(0, C) =
0 = ∂Sf(1, C) para cada C.

b) Para cada C, fw(S,C) é estritamente crescente em relação a S com um único ponto de
inflexão, que denotaremos por Si, onde a derivada segunda de f com respeito a S é positiva
à esquerda de Si, e negativa à direita de Si.

c) A derivada parcial ∂Cf(S,C) > 0, para S e C no domínio físico.

Tais hipóteses são análogas às adotadas nos trabalhos [14–16], onde se considerou que f é uma
função decrescente em relação a C. Embora essa diferença seja consequência da diferente física
representada, podemos recair em um cenário próximo através da mudança de variável C = 1−C,
onde a diferença permanece devido à presença da constante A. Com essas propriedades, para C
constante, temos que o sistema (1)-(2) se reduz à equação de Buckley-Leverett [5].

4 Modelo CMG-STARS
Nesta seção, apresentamos o modelo de espuma em equilíbrio implementado no simulador

CMG-STARS [1], que será utilizado durante esse trabalho.
O efeitos da espuma são representados através o termo de redução de mobilidade, FM , dado

por
FM(S,C) = (1 + fmmobF1(C) · F2(S))

−1
, (5)

onde fmmob representa o fator de redução de mobilidade de referência (se esse parâmetro é zero,
não temos espuma). A função F2 representa os efeitos da saturação da água:

F2(S) = 0.5 + (arctan (epdry((1− Swc − Sgr)S + Swc − fmdry))) /π, (6)

onde fmdry é a saturação crítica da água e epdry representa o declive dos efeitos de secagem. A
função F1 descreve os efeitos da concentração de surfactante, dada por

F1(C) =


(
Cmax C

fmsurf

)epsurf

, se Cmax C < fmsurf,

1, se Cmax C ≥ fmsurf,

(7)

onde fmsurf é a concentração crítica de surfactante e epsurf um expoente.
A função de fluxo fracionário é dada por

f(S,C) = krw(S)/ ((krw(S) + (µw/µg)krg(S) · FM(S,C))) , (8)

onde krw e krg são as permeabilidades relativas da água e do gás (seguindo o modelo Brooks-Corey
[4]) respectivamente, e µw e µg são as viscosidades da água e do gás. Em [11], foi mostrado que
este modelo satisfaz as propriedades apresentadas na Seção 3, adotando parâmetros da Tabela 1
de [11]. Dessa forma, podemos aplicar a teoria apresentada a seguir ao modelo de espuma em
equilíbrio implementado no simulador CMG-STARS.

5 Solução do Problema de Riemann
Nesta seção investigamos o problema de Riemann (1)-(2) e (4). A construção da solução global

pode ser encontrada com maiores detalhes em [11]. Reescrevendo o sistema na forma geral

Ut +A(U)Ux = 0, (9)
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onde a matriz A(U) é dada por

A(U) =

[
∂Sf ∂Cf
0 f/(S +A)

]
. (10)

Os autovalores e autovetores associados à matriz A(U) são:

λS = ∂Sf, rS = (1, 0)T , (11)

λC = f/(S +A), rC = (∂Cf, f/(S +A)− ∂Sf)
T
. (12)

Para cada C fixo, existe um único S∗ = S∗(C) tal que

λS(S
∗, C) = λC(S

∗, C). (13)

Nos pontos (S∗, C) a matriz A não é diagonalizável. Similar ao feito em [14–16], podemos classificar
o plano de fase em função da sequência de ondas que compõem a solução, resolvendo globalmente
o problema de Riemann (1)-(2) e (4).

Notamos que existem condições iniciais nas quais mais de uma sequência de onda é possível.
Estudando o comportamento dessas soluções, observamos que dependem continuamente dos dados
iniciais e são únicas adotando a norma do espaço Lp para p ∈ N. Concluímos assim que o problema
de Riemann estudado é bem-posto no sentido de Hadamard. Apesar disso, pequenas mudanças
nas condições iniciais podem resultar em soluções qualitativamente diferentes, indicando que o
problema de Riemann possui instabilidades estruturais [13, 20] nos conjuntos de parâmetros onde há
perda de unicidade. A Fig. 1 apresenta um exemplo da mudança qualitativa do perfil da saturação
de água para pequenas variações de UR no cenário onde há perda de unicidade. Essas soluções
foram obtidas numericamente pelo Solver Reaction Convection Diffusion Equations (RCD).

Figura 1: Perfis da saturação da água no tempo t = 3 para o estado à esquerda UL = (0.15, 0.4) e
estados à direita próximos: UR− = (0.360, 0.7273) e UR+ = (0.367, 0.7273). Fonte: [9].

6 Banco de Surfactante Ótimo

Nesta seção, estudamos o banco de surfactante e como melhorar seu desempenho na varredura
do meio poroso. Como estamos interessados na formação de espuma in-situ, consideramos o banco
de surfactante como um processo de imbibição (RP1) seguido por um processo de drenagem (RP2),
conforme a Fig. 2. Denotamos por U1

L e U1
R as condições iniciais do RP1, U2

L e U2
R as condições

iniciais do RP2. A velocidade da frente do gás vg é dada pela velocidade final do RP2, e a velocidade
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Figura 2: Representação esquemática dos problemas de Riemann RP1 e RP2. Fonte: [9].

da frente do surfactante vc é a velocidade do contato de RP1. Visamos determinar condições para
otimizar o desempenho da espuma e o impacto da adsorção.

Adotando S2
L = 10−3, C2

L = 0, S2
R = S1

L = 0.9999, C1
L = C2

R > 0 e C1
R = 0, a solução de

RP2 é dada por uma sequência de contato, rarefação e choque respectivamente. A velocidade da
frente do gás é a velocidade do último choque. Já a imbibição pode ter a solução composta por
duas ou três ondas, dependendo da escolha de S1

R. Estudando ambos os casos e as respectivas
velocidades finais, concluímos que S1

R = S1
L resulta no cenário em que o encontro da frente do gás

e do surfactante é adiado.
Para estudar a melhor concentração de surfactante a ser utilizada, introduzimos o tamanho do

banco de surfactante, expresso por:

Tsurf = 1/vc − 1/vg. (14)

O tamanho do banco de surfactante representa o menor tempo de injeção de água com surfactante
necessário para garantir que a frente do gás não ultrapasse a frente do surfactante. O painel
esquerdo da Fig. 3 mostra o tamanho do banco de surfactante em função da concentração C1

L.
Notamos que a redução em Tsurf é significativa para valores mais baixos de C, onde a partir de
C = 0.2 não há grandes mudanças. Visando utilizar uma concentração que apresenta uma boa
redução no tamanho do banco de surfactante sem grandes adições de custo, adotamos C1

L = 0.1.
Finalmente, investigamos o impacto que a constante de adsorção tem no tamanho do banco de

surfactante. O painel direito da Fig. 3 representa o tamanho do banco de surfactante em função de
Ka

d variando de 0 a 1. Aumentar o valor de Ka
d implica em uma maior quantidade de surfactante

adsorvida, reduzindo a concentração de surfactante. Isso resulta em uma alteração da velocidade do
gás e do surfactante, que dependem fortemente do valor de C. Conforme apresentado na Eq. (14),
isso resulta na alteração no tamanho do banco de surfactante.

7 Conclusões

Motivados pelo deslocamento de espuma em meio porosos com adsorção linear do surfactante,
estendemos cenários já existentes para o fluxo bifásico contendo um traçador ativo descrito por um
sistema de leis de conservação não estritamente hiperbólico. Resolvemos o problema de Riemann
global, obtendo conjuntos onde há perda da unicidade da solução. Investigamos os casos onde
a solução não é única, concluindo que o problema é bem-posto. Apesar disso, para parâmetros
nos conjuntos onde temos a perda de unicidade, pequenas variações no estado UR resulta em
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Figura 3: O painel esquerdo apresenta o tamanho do banco de surfactante em função da concen-
tração de surfactante. O painel direito, o tamanho do banco de surfactante em função de Ka

d .
Fonte: [9].

soluções qualitativamente diferentes, refletindo a perda de estabilidade estrutural do problema.
Verificamos que o modelo implementando no simulador comercial CMG-STARS possui regiões
de parâmetros onde as hipóteses adotadas neste trabalho são satisfeitas. Dessa forma, existem
regiões de parâmetros onde o modelo do CMG-STARS é estruturalmente instável, podendo resultar
em oscilações numéricas. Estudamos o banco de surfactante, composto pela sequência de dois
problemas de Riemann. Nossos resultados apontam que o banco de surfactante ótimo é alcançado
para baixas concentrações, indicando que o modelo de adsorção linear é adequado nesse cenário
[17]. Finalmente, analisamos o impacto da adsorção no banco de surfactante, onde foi possível
descrever o tempo de injeção do surfactante em função da constante Henry.
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