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Resumo. Este trabalho tem a proposta de modelar uma dinâmica populacional baseada na Teoria
de Metapopulações. É utilizado o conceito de difusão para descrever a dinâmica populacional de
uma metapopulação em desequilíbrio, caracterizada por indivíduos que vivem em fragmentos de ha-
bitat totalmente isolados. O modelo de difusão-reação é empregado para representar o crescimento
populacional periódico e limitado pela capacidade de suporte do meio, além da dispersão dos indi-
víduos. O modelo é tratado de forma numérica pelo método de discretização de Crank–Nicolson,
por meio do qual se analisa a interferência dos valores dos parâmetros na equação.
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1 Introdução

A dinâmica populacional é o ramo das Ciências Biológicas que estuda a variação na quantidade
de indivíduos de uma população, bem como os fatores que contribuem ou dificultam essa variação.
A sua modelagem é baseada na premissa de que a variação do tamanho de uma população é dada
pela diferença entre o número de nascimentos e mortes de indivíduos, além da migração.

A Teoria de Metapopulações é uma abordagem dentro da dinâmica populacional, que considera
que subpopulações de uma mesma espécie divididas em locais isolados, conhecidos como refúgios [3]
ou fragmentos de um habitat original, podem interagir por meio da migração. Além disso, há fatores
que influenciam essa dinâmica, como reprodução, competição por recursos (como alimento e espaço)
e predação. Portanto, uma metapopulação, ou “população de populações” [5], pode ser entendida
como um conjunto de subpopulações conectadas por migração, distribuídas em fragmentos de
habitats, e que podem tanto persistir quanto ser extintas localmente nesses fragmentos.

Para implementar a modelagem da dinâmica de metapopulações, têm-se desenvolvido vários
modelos biológicos que descrevem como os indivíduos podem migrar entre os fragmentos [4]. Esses
modelos são utilizados para investigar a dinâmica e a sobrevivência de populações em diferentes
cenários, incluindo a definição de estratégias para a conservação de espécies.

A Figura 1 representa os fragmentos como círculos, cujo tamanho é proporcional ao tamanho de
cada mancha. As manchas pintadas representam os fragmentos de habitat que são ocupados pelos
indivíduos da população, enquanto os espaços em branco correspondem a locais desocupados. As
setas indicam o fluxo migratório, ou seja, a movimentação de indivíduos de um local para outro,
podendo ou não haver trocas mútuas entre as subpopulações, como é o caso das Figuras 1(c)
e 1(e). Os tracejados ao redor de cada mancha representam as fronteiras ou limites de ocupação de
cada local. Observa-se que, por maior que seja a subpopulação de cada mancha, ela nunca ocupa
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Figura 1: Representação de modelos metapopulacionais onde: (a) clássico/Levins, (b) continente-
ilha, (c) população em mancha (patchy population), (d) metapopulação em desequilíbio (nonequi-
librium metapopulation), (e) misto. Fonte: Empirical Evidence for Metapopulation Dynamics [4].

totalmente esses fragmentos. Pode-se dizer que há sempre algum fator (ou fatores) que impede a
totalidade da ocupação do habitat.

O objetivo deste trabalho é modelar a dinâmica populacional de uma metapopulação em dese-
quilíbrio (Figura 1(d)) por meio de uma equação de difusão-reação e, com isso, entender sob quais
circunstâncias a subpopulação pode se desenvolver dentro de um fragmento com capacidade de
suporte K(t), que varia ao longo do tempo, e sobreviver nesse ambiente. Para este modelo, foi
desenhada uma função de difusão D(x,K) que privilegia a concentração no interior do fragmento.

2 Modelagem de Metapopulação em Desequilíbrio
Baseado no modelo biológico de metapopulação em desequilíbrio (Figura 1(d)), neste trabalho

modela-se uma dinâmica na qual supõe-se que uma subpopulação está totalmente isolada em um
fragmento de habitat, de modo que os processos biológicos que a regem são difusão, crescimento e
competição intraespecífica. Dessa forma, desconsidera-se qualquer fluxo migratório de indivíduos
de outras subpopulações entre os ambientes.

Devido à ausência de migrações nesses fragmentos, a população remanescente pode diminuir e
se extinguir por falta de recursos necessários para sua manutenção a longo prazo. Isso significa que
o ambiente não é viável para comportar a população nesse horizonte temporal e que ela não tem a
capacidade de desenvolver uma relação de equilíbrio entre ocupação e uso de recursos. Portanto,
deseja-se compreender sob quais circunstâncias essa metapopulação pode estabelecer esse equilíbrio
e permanecer no ambiente.

A dinâmica de metapopulação em desequilíbrio para uma subpopulação dada, em um fragmento
com capacidade de suporte K, é descrita pela seguinte equação de difusão-reação (unidimensional)
[1], com condições de contorno de Dirichlet e condição inicial:

∂ρ

∂t
(x, t) =

∂

∂x

(
D(x,K)

∂ρ

∂x
(x, t)

)
+ f(x, t, ρ)

ρ(0, t) = ρ(L, t) = 0

ρ(x, 0) =
N0

L
, x ∈ (0, L)

(1)

com (x, t) ∈ [0, L]×[0,+∞) e N0 o tamanho inicial da população. Esta equação descreve a variação
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da densidade populacional ρ(x, t), com um coeficiente de difusão D(x,K) e uma fonte f(x, t, ρ).
No modelo (1), as condições de contorno indicam que a densidade populacional é nula nos

extremos do fragmento de habitat considerado, um intervalo de comprimento L. Esta condição é
chamada de fronteira absorvente (absorbing boundary) [3], que supõe que os indivíduos que deixam
o ambiente morrem imediatamente ou perdem de forma permanente a capacidade de retornar.
Por sua vez, a condição inicial representa que os indivíduos estão uniformemente distribuídos no
fragmento de habitat no instante inicial.

Nesse problema, será considerado que a difusão é variável e depende da capacidade de suporte,
representada por uma função na forma

D(x,K) = D0 e−K(x−x̄)2 , (2)

na qual D0 é uma constante positiva e x̄ é o ponto do intervalo onde a difusão é maior. Neste
caso, será considerado o ponto médio do intervalo de x. A motivação dessa escolha é baseada
nas alterações sofridas pelos ambientes à medida que o tempo avança [2], as quais influenciam a
velocidade de espalhamento. Ao mesmo tempo, busca-se representar uma situação populacional que
privilegie a concentração no interior, reduzindo a densidade conforme os indivíduos se aproximem
dos extremos do fragmento.

A função de reação escolhida corresponde à função logística, amplamente estudada e utilizada
na modelagem de sistemas físicos e biológicos. Esta função tem a forma

f(x, t, ρ) = r(t)ρ(x, t)

(
1− ρ(x, t)

K(t)

)
, (3)

onde r é a taxa de crescimento da população. Esta função representa o crescimento limitado da po-
pulação na presença de outros indivíduos da mesma população, devido à competição intraespecífica
entre esses indivíduos [1, 2].

Em geral, observa-se que indivíduos de muitas espécies têm como característica a reprodução
periódica e que locais isolados, como ilhas, também apresentam períodos de maior ou menor via-
bilidade de moradia. Outro fator, que combina aspectos geográficos e climáticos, é a diminuição
da área de habitat segura em lugares gelados, os quais, devido ao aquecimento global, têm seu
tamanho total reduzido ou perigosamente transformado. Por outro lado, fatores climáticos como
o aumento e a diminuição da temperatura são condições sazonais que também impactam a dinâ-
mica populacional, influenciando diretamente o aumento da natalidade ou da mortalidade de uma
população.

De modo a descrever cenários de oscilações periódicas no ambiente e no crescimento da po-
pulação, na análise da equação (1) serão consideradas a capacidade de suporte K e a taxa de
crescimento r como funções periódicas [2]. Assim, estas funções são definidas da seguinte forma:

K(t) = k1 + k2 sen
(
2πt

pK

)
(4)

r(t) = r1 + r2 sen
(
2πt

pr

)
, (5)

onde ki e ri (i = 1, 2) são constantes reais positivas, com k1 > k2. As constantes pK e pr são os
períodos de oscilação das funções (4) e (5), respectivamente.

3 Metodologia
O método de Crank-Nicolson (CN) consiste em discretizar uma equação diferencial parcial

num nível intermediário entre os tempos tj e tj+1, ou seja, num ponto fora da malha. Usa-se
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um esquema de discretização centrado na variável t, enquanto as derivadas em relação a x são
aproximadas fazendo uma média das discretizações nos níveis de tempo tj e tj+1, onde i toma
valores de 0 a N e j, de 0 a M .

Expandindo a equação de difusão-reação (1) em termos de suas derivadas de primeira e segunda
ordem em relação a x e omitindo os argumentos obtém-se

∂ρ

∂t
=

∂D

∂x

∂ρ

∂x
+D

∂2ρ

∂x2
+ rρ

(
1− ρ

K

)
, (6)

onde K é dada pela expressão (4) e r é dada por (5). O coeficiente de difusão variável é dado pela
função (2) e sua derivada parcial em relação a x é dada pela expressão

Dx =
∂D

∂x
= 2D0K(t)(x̄− x) e−K(x−x̄)2 . (7)

Aplicando o método de CN, a discretização da equação (6) fica na forma

ρj+1
i − ρji

k
=

Dx
j+1/2
i

2

(
ρj+1
i+1 − ρj+1

i−1

2h
+

ρji+1 − ρji−1

2h

)
(8)

+
D

j+1/2
i

2

(
ρj+1
i+1 − 2ρj+1

i + ρj+1
i−1

h2
+

ρji+1 − 2ρji + ρji−1

h2

)
+ rj+1/2 ρji

(
1− ρji

Kj+1/2

)
.

Após algumas manipulações, pode-se colocar a equação discretizada na forma

Ai,j+1/2 ρj+1
i+1 + (1 +Bi,j+1/2) ρ

j+1
i + Ci,j+1/2 ρj+1

i−1 = (9)

− Ai,j+1/2 ρji+1 + (1−Bi,j+1/2) ρ
j
i + Ci,j+1/2 ρji−1 + kr j+1/2 ρji

(
1− ρji

K j+1/2

)

onde

Ai,j+1/2 = −λDx
j+1/2
i − γD

j+1/2
i , Bi,j+1/2 = 2γD

j+1/2
i , Ci,j+1/2 = λDx

j+1/2
i − γD

j+1/2
i ,

e as constantes λ e γ são tais que

λ =
k

4h
, γ =

k

2h2
. (10)

4 Resultados
A partir da discretização da equação (1), dada pela expressão (9), foi possível realizar simulações

numéricas resolvendo um sistema não linear e encontrando os valores de ρ(x, t) no tempo avançado
tj+1 para cada xi. Com isso, foi possível analisar a interferência de cada parâmetro do modelo na
dinâmica populacional descrita. A resolução do sistema foi feita utilizando a biblioteca NumPy, e
todas as imagens foram geradas utilizando a biblioteca Matplotlib.pyplot, ambas do Python. Em
cada simulação foram usados os passos de discretização h = 2 · 10−3 (espaço) e k = 4.0 · 10−2

(tempo). Os códigos desenvolvidos são abertos e podem ser acessados na plataforma GitHub4.
Em relação à difusão variável, os quatro parâmetros que provocam alteração na forma como

os indivíduos se espalham no fragmento são D0, k1, k2 e pK . Pode-se verificar que D0 contribui
para a velocidade de difusão, pois, quanto maior o valor desse parâmetro, mais rápido a densidade

4https://github.com/MukRodrigues/Simulacao-difusao-reacao.git
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decresce e se homogeneiza. Na capacidade de suporte K, dada pela equação (4), k1 contribui
para a redução da velocidade de difusão. Isso faz com que a densidade populacional decresça
mais lentamente, possibilitando a persistência da população. O parâmetro k2 provoca aumento ou
diminuição da capacidade de suporte, a depender do período de oscilação pK . Quanto maior o valor
desse parâmetro, maior a diferença entre a maior capacidade de suporte do ambiente (K = k1+k2)
e a menor (K = k1 − k2).

Na função de reação (3), os seis parâmetros que provocam alteração no crescimento da po-
pulação são k1, k2, pK , r1, r2 e pr. Os parâmetros k1, k2 e pK da capacidade de suporte limitam
o crescimento e o decrescimento da população e, consequentemente, contribuem para que haja
alguma estabilização da densidade populacional ao longo do tempo. A depender do fator limitante

1− ρ(x, t)

K(t)
(11)

da função de reação, pode-se observar o crescimento da população à medida que a capacidade de
suporte supera os valores da densidade em cada ponto do intervalo, ou seja, quando K(t) > ρ(x, t)
(considerando r > 0). Caso contrário, observa-se decrescimento, quando K(t) < ρ(x, t).

Já na taxa de crescimento r, dada pela equação (5), r1 intensifica o crescimento populacional
quando o seu valor consegue superar a ação do coeficiente básico de difusão D0. O decrescimento da
densidade pode ocorrer quando r1 não é suficiente para sobrepor o efeito da difusividade, dada pela
equação (2). O parâmetro r2 provoca uma oscilação de período pr nessa mesma taxa, permitindo
observar as alterações que r provoca no modelo quando se alcança o maior valor (r = r1 + r2)
e o menor (r = r1 − r2). Ocorre que, tanto no cenário de crescimento populacional quanto no
cenário de decrescimento, pode-se verificar um efeito de regressão periódica da densidade conforme
o tempo avança. Quanto maior o valor de r2, maior será essa regressão.

Caso haja crescimento da população, significa que o ambiente tem condições suficientes para
comportar a população. Em outras palavras, o ambiente oferece condições viáveis à permanência
dos indivíduos, a ponto de a competição intraespecífica não impedir o crescimento populacional.
Em contrapartida, o decrescimento da população indica que a competição intraespecífica torna
o ambiente inviável à permanência dos indivíduos, devido à presença excessiva de indivíduos no
fragmento. Portanto, essa competição é o fator limitante ao crescimento.

Os resultados das simulações numéricas podem ser observados na Figura 2. A Figura 2(a)
apresenta uma seta preta indicando a tendência da densidade diminuir, a partir da distribuição
inicial da densidade ρ(xi, 0) = 5. As Figuras 2(b), 2(c) e 2(d) apresentam duas setas, indicando o
efeito de regressão da densidade. Em cada figura, as curvas que transitam do vermelho para o azul
indicam a densidade calculada em diferentes instantes de tempo, de modo que as curvas vermelhas
estão mais próximas do tempo inicial t0 = 0, enquanto as curvas azuis estão mais próximas do
tempo final da simulação. Os valores dos parâmetros considerados nas simulações foram: (a)
D0 = 0.5, k1 = 10, k2 = 0, r1 = 1.5, r2 = 0, (b) D0 = 0.5, k1 = 10, k2 = 2, pk = 8, r1 = 1.5, r2 = 0,
(c) D0 = 0.5, k1 = 10, k2 = 0, r1 = 3, r2 = 0.6, pr = 5, (d) D0 = 0.5, k1 = 10, k2 = 2, pk = 8, r1 =
3, r2 = 0.6, pr = 5.

A Figura 2(a) ilustra um cenário de diminuição da densidade. Foram consideradas as funções
r e K constantes, isto é, com r2 = k2 = 0. O que se observa é a tendência de homogeneização
da densidade, mesmo que, nos primeiros instantes de tempo, possa-se verificar o aumento da con-
centração de indivíduos no interior do espaço. Isso retrata a ação da competição intraespecífica
desacelerando o crescimento da população no interior à medida que o tempo avança. Da mesma
forma, a Figura 2(b) também mostra um cenário de diminuição da densidade. Nela, a taxa de
crescimento é constante e a capacidade de suporte é variável no tempo (k2 ̸= 0). Nota-se a so-
breposição das curvas de densidade nas partes azuis do gráfico devido à oscilação periódica da
capacidade de suporte, que permite a persistência da população no ambiente mesmo havendo uma
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(a) Diminuição da densidade: r e K constantes. (b) Diminuição da densidade: r constante
e K variável.

(c) Aumento da densidade: r variável
e K constante.

(d) Aumento da densidade: r e K variáveis.

Figura 2: Resultados da simulação numérica da equação de difusão-reação (1) com fonte logística
usando o Método de Crank-Nicolson. Fonte: Autores.

redução da densidade inicial. No começo, a densidade apresenta a tendência de se homogeneizar,
mas não totalmente, pois o ambiente oferece condições suficientes para que a competição intraes-
pecífica não provoque a extinção local dos indivíduos. Pode-se verificar que as regiões nas quais as
curvas estão mais próximas umas das outras (em vermelho e em azul) correspondem ao período em
que a capacidade de suporte alcança seu valor mais elevado (K = k1 + k2), enquanto que, onde as
curvas estão mais espaçadas, a capacidade de suporte atinge seu valor mais baixo (K = k1 − k2).

Os dois últimos cenários, representados nas Figuras 2(c) e 2(d), são cenários de aumento de
densidade, considerando r variável (r2 ̸= 0). O parâmetro r1 é responsável pelo aumento de
densidade em ambas as figuras. A mudança desse parâmetro de r1 = 1.5 (Figura 2(a)) para
r1 = 3 (Figura 2(c)) possibilitou a descrição de situações de crescimento, pois, conforme esse valor
aumenta, observa-se maior aglomeração de indivíduos no interior do intervalo, através das curvas
de densidade mais elevadas. Contudo, esse crescimento é limitado pela capacidade de suporte. A
presença do parâmetro r2 provoca aumento e redução periódicos da taxa de crescimento, a ponto de,
novamente, se observar o efeito de sobreposição das curvas de densidade (regressão), conforme visto
na Figura 2(b). Isso significa que, conforme a densidade aumenta, ocorre uma diminuição periódica
da taxa de crescimento r. Caso essa diminuição seja suficiente para que a difusividade, dada pela
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equação (2), sobreponha o crescimento, será observado esse efeito de sobreposição das curvas de
densidade. Por fim, o último cenário, ilustrado na Figura 2(d), apresenta o efeito da variação
da capacidade de suporte (k2 ̸= 0). Nesse caso, verificam-se os comportamentos oscilatórios das
Figuras 2(b) e 2(c), ocorrendo o efeito de regressão de forma mais intensa e a permanência dos
indivíduos no fragmento de habitat ao longo do tempo.

5 Considerações Finais
Neste trabalho foi utilizado o conceito de difusão para descrever a dinâmica de uma metapo-

pulação, considerando-se a variação populacional e o espalhamento de indivíduos pelo ambiente.
Para isso, foi estudada uma equação diferencial parcial de difusão-reação, dada pelo modelo (1).
Foram consideradas uma função de difusão variável e uma função de reação logística, dadas pelas
expressões (2) e (3), respectivamente, para representar as alterações ambientais no comportamento
da população. Nessas condições, foram feitas simulações numéricas usando o Método de Crank-
Nicolson, gerando gráficos que ilustram a forma na qual os parâmetros dessas funções interferem
no modelo.

Dessa forma, foram verificadas as circunstâncias nas quais acorre o espalhamento dos indiví-
duos em um fragmento de habitat isolado, assim como a sobrevivência dos indivíduos em cada
fragmento. A partir dos resultados encontrados foi possível verificar que a presença da fonte logís-
tica provoca um crescimento da densidade de população limitado pela competição intraespecífica.
Constatou-se que o modelo permite descrever crescimento limitado e persistência. Em relação às
funções periódicas consideradas para representar a taxa de crescimento e a capacidadade suporte, é
importante observar que estas funções devem ser limitadas e, ainda, restringir a capacidade suporte
K a valores não negativos, pelo próprio significado biológico que esse fator tem. Como trabalho
futuro, é previsto aprimorar o modelo incorporando um fator de migração, para conectar vários
fragmentos de habitat, possibilitando obter um modelo metapopulacional mais completo.

Agradecimentos
O presente trabalho foi realizado com apoio da Fundação Carlos Chagas Filho de Amparo à

Pesquisa do Estado do Rio de Janeiro (FAPERJ) e da Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.

Referências
[1] R. Bassanezi e W. Ferreira. Equações Diferenciais com Aplicações. São Paulo: Harbra,

mai. de 1988, p. 585.
[2] B. D. Coleman, Y. H. Hsieh e G. P. Knowles. “On the optimal choice of r for a Population

in a periodic Environment”. Em: Mathematical Biosciences 46.1-2 (1979), pp. 71–85. doi:
https://doi.org/10.1016/0025-5564(79)90015-4.

[3] E. H. Colombo e C. Anteneodo. “Nonlinear population dynamics in a bounded habitat”. Em:
Journal of Theoretical Biology 446 (2018). doi: 10.1016/j.jtbi.2018.02.030.

[4] S. P. Harrison e A. D. Taylor. “Empirical Evidence for Metapopulation Dynamics”. Em: Meta-
population Biology. San Diego: Academic Press, 1997, pp. 27–42. isbn: 978-0-12-323445-2.
doi: https://doi.org/10.1016/B978-012323445-2/50004-3.

[5] O. J. Marini-Filho e R. P. Martins. “Teoria de metapopulações, novos princípios na biologia
da conservação”. Em: Ciência Hoje 27 (2000), pp. 22–29.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0309 010309-7 © 2026 SBMAC

https://doi.org/https://doi.org/10.1016/0025-5564(79)90015-4
https://doi.org/10.1016/j.jtbi.2018.02.030
https://doi.org/https://doi.org/10.1016/B978-012323445-2/50004-3
http://dx.doi.org/10.5540/03.2026.012.01.0309

	Introdução
	Modelagem de Metapopulação em Desequilíbrio
	Metodologia
	Resultados
	Considerações Finais

