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Resumo. A modelagem matemática é essencial para entender epidemias e avaliar estratégias de
controle. Propomos um modelo SEIR modificado que inclui vacinação, hospitalização e mudanças
comportamentais. O modelo distingue indivíduos que adotam distanciamento social daqueles que
não o praticam, permitindo analisar seus impactos na transmissão. Simulações numéricas indicam
que a vacinação precoce e medidas oportunas de distanciamento reduzem significativamente a pro-
pagação da doença e a demanda hospitalar. O modelo fornece um arcabouço matemático para
embasar políticas públicas, capturando a interação entre imunização, comportamento populacional
e disseminação da infecção.
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1 Introdução
A modelagem matemática é essencial para compreender a dinâmica de epidemias e avaliar a

eficácia de estratégias de controle. Modelos epidemiológicos baseados em equações diferenciais
ordinárias permitem analisar a propagação de doenças sob diferentes cenários. A pandemia de
COVID-19 destacou a importância de medidas não farmacológicas, como o distanciamento social,
e farmacológicas, como a vacinação, na mitigação da transmissão [1].

Neste trabalho, apresentamos um modelo epidemiológico desenvolvido em nossa tese de douto-
rado [6], no qual introduzimos o compartimento de vacinados (V ) e o parâmetro ϑ, que representa
mudanças comportamentais na população. A inclusão desses elementos permite uma análise mais
abrangente do impacto da vacinação e do distanciamento social na propagação da doença. As simu-
lações numéricas realizadas contribuem para o desenvolvimento de estratégias eficazes de mitigação
e controle epidemiológico.

2 Formulação do Modelo
Assumimos uma situação hipotética na qual a população total N é subdividida em suscetíveis

(S), expostos (E), infectados (I) e recuperados (R). Além disso, as classes S, E e I são subdivididas
em dois grupos: indivíduos que praticam distanciamento social (isolados) e aqueles que não o
fazem (não isolados), seja voluntária ou involuntariamente. Como ilustrado na Figura 1, o modelo
proposto considera dois fluxos principais: S1 → E1 → I1 → H → R para os não isolados e
S2 → E2 → I2 → H → R para os isolados.
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Figura 1: Fluxograma com a dinâmica da doença. Fonte: Autor.

Neste modelo, incorporamos uma dinâmica vital, considerando nascimentos e mortes na popu-
lação, além da inclusão do compartimento de hospitalizados (H), refletindo a gravidade da doença
e a demanda por recursos de saúde. Esse compartimento permite modelar a progressão da doença
e avaliar o impacto das hospitalizações na dinâmica epidêmica. A transmissão ocorre por meio dos
contatos entre suscetíveis e infectados, descritos pelas expressões:

Π1 = S1(β1I1 + β2I2)
N

e Π2 = S2(δ1I1 + δ2I2)
N

. (1)

Os infectados podem evoluir para hospitalização a taxas ω1 e ω2 e se recuperar a taxas γ1 e γ2.
Os hospitalizados podem se recuperar a uma taxa τ ou evoluir para óbito a uma taxa µh. Além
disso, incluímos um compartimento de vacinados (V ) para avaliar o impacto da imunização na
transmissão da doença [1]. A população total é definida por N = S1 +S2 +E1 +E2 +I1 +I2 +H +
R + V , onde S1, E1, I1 representam os indivíduos que não adotam medidas de mitigação, enquanto
S2, E2, I2 correspondem aos que adotam estratégias de controle.

A inclusão do compartimento de vacinados permite avaliar a eficácia da vacinação na redução
da suscetibilidade à doença e na diminuição da transmissão, auxiliando na estimativa da cobertura
vacinal necessária para o controle da epidemia [5]. Além disso, a interação entre estratégias não
farmacológicas, como o distanciamento social, e a vacinação pode ser determinante no controle
da disseminação da doença, especialmente quando a vacinação não é universal ou sua eficácia é
limitada.

Introduzimos também um parâmetro ϑ, que representa mudanças de conduta da população
durante o período epidêmico, permitindo a migração entre os grupos S1, E1, I1 e S2, E2, I2, con-
forme a percepção do risco da doença. Estudos indicam que essas mudanças de comportamento
são frequentes durante epidemias [2].

Os suscetíveis podem ser vacinados, conferindo-lhes imunidade temporária. No entanto, como
a vacina não é 100% eficaz, os vacinados ainda podem ser infectados ao entrar em contato com I1
e I2, a taxas ϵ1 e ϵ2, evoluindo para o compartimento de expostos.

A inclusão da vacinação e do retorno dos recuperados ao compartimento de suscetíveis adiciona
novas complexidades ao modelo, permitindo avaliar o impacto da imunidade, da cobertura vacinal
e das taxas de mortalidade na dinâmica epidêmica. Com esses elementos, o modelo se torna mais
abrangente e realista, possibilitando uma análise mais detalhada da efetividade das estratégias de
controle, ao mesmo tempo em que considera a heterogeneidade comportamental da população [7].
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A Tabela 1 apresenta a descrição e o significado biológico dos parâmetros do Modelo e seu
sistema de equações diferenciais, considerando que todos os parâmetros são positivos.

Tabela 1: Descrição dos Parâmetros do Modelo.
Parâmetro Descrição
β1, β2 Taxa de transmissão de S1 com I1, I2
δ1, δ2 Taxa de transmissão de S2 com I1, I2
ρ, (1 − ρ) Probabilidade de recuperados tornarem-se S1 ou S2
θ1, θ2 Taxa de transição de expostos para infectados
γ1, γ2 Taxa de recuperação de infectados
η1, η2 Taxa de perda da imunidade vacinal
κ1, κ2 Taxa de vacinação dos suscetíveis
ω1, ω2 Taxa de hospitalização de infectados
µ, µi, µh Taxas de mortalidade natural, por doença e hospitalizados
τ Taxa de recuperação dos hospitalizados
b, p Taxa de nascimentos e fração de nascidos que entram em S1
α Taxa de perda da imunidade temporária

Basendo-se nas suposições descritas anteriormente, a dinâmica do modelo proposto pela Figura
1 pode ser então descrita pelo seguinte sistema de equações diferenciais ordinárias (2).

dV

dt
= −V (ϵ1I1 + ϵ2I2)

N
− µV − η1V − η2V + κ1S1 + κ2S2,

dS1

dt
= pbN − µS1 − κ1S1 − ϑ1S1 + ϑ2S2 − S1

N
(β1I1 + β2I2) + η1V + ραR,

dE1

dt
= ϵ1I1V

N
+ S1

N
(β1I1 + β2I2) − ϑ1E1 + ϑ2E2 − (µ + θ1)E1,

dI1

dt
= θ1E1 − ϑ1I1 + ϑ2I2 − (µ + µi + γ1 + ω1)I1,

dS2

dt
= (1 − p)bN − µS2 − κ2S2 − ϑ2S2 + ϑ1S1 − S2

N
(δ1I1 + δ2I2) + η2V + (1 − ρ)αR,

dE2

dt
= ϵ2I2V

N
+ S2

N
(δ1I1 + δ2I2) − ϑ2E2 + ϑ1E1 − (µ + θ2)E2,

dI2

dt
= θ2E2 − ϑ2I2 + ϑ1I1 − (µ + µi + γ2 + ω2)I2,

dH

dt
= ω1I1 + ω2I2 − (µ + µh + τ)H,

dR

dt
= γ1I1 + γ2I2 + τH − (µ + α)R.

(2)

3 Análise do Modelo
O número básico de reprodução será determinado pelo método de [3], considerando as equações

do sistema (2) que descrevem as classes infecciosas E1, I1, E2, I2 e H. No equilíbrio livre da doença,
assumimos que a vacinação impede o isolamento, de modo que S1 e V são proporcionais à população
total N , com S1 = ξN e V = (1−ξ)N , onde ξ é a fração não vacinada. Assim, o ponto de equilíbrio
livre da doença é dado por E0 = ((1 − ξ)N, ξN, 0, 0, 0, 0, 0, 0, 0).

O ponto de equilíbrio livre de infecção indica que a população está entre os suscetíveis (S1) ou va-
cinados (V ), sem indivíduos infectados. Definimos o vetor de infectados como x = (E1, I1, E2, I2, H)
e calculamos as matrizes F e V no equilíbrio E0. A matriz da próxima geração é dada por
K = FV−1, permitindo determinar o número básico de reprodução R0 como Tr(K), conforme [3].

A matriz K é expressa como:
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K =


A d4(bβ1−(b−1)ϵ1)−bβ2ϑ1

µ(d2d4+ϑ1ϑ2) B ϑ2(bβ1−(b−1)ϵ1)+bβ2d2
µ(d2d4+ϑ1ϑ2) 0

0 0 0 0 0
C (b−1)ϵ2ϑ1

µ(d2d4+ϑ1ϑ2) D − (b−1)d2ϵ2
µ(d2d4+ϑ1ϑ2) 0

0 0 0 0 0
0 0 0 0 0

 (3)

onde A = θ1(d3(d4(bβ1−bϵ1+ϵ1)−bβ2ϑ1)+ϑ1(ϑ2(bβ1−bϵ1+ϵ1)+bβ2d2))
µ(d1d3−ϑ1ϑ2)(d2d4+ϑ1ϑ2) , C = − (b−1)(d2−d3)θ1ϵ2ϑ1

µ(d1d3−ϑ1ϑ2)(d2d4+ϑ1ϑ2) ,
B = θ1(ϑ2((d1+d4)(bβ1−(b−1)ϵ1)−bβ2ϑ1)+bβ2d1d2)

µ(d1d3−ϑ1ϑ2)(d2d4+ϑ1ϑ2) e D = (b−1)θ1ϵ2(d1d2−ϑ1ϑ2)
µ(ϑ1ϑ2−d1d3)(d2d4+ϑ1ϑ2) .

Assim, o número básico de reprodução é dado por R0 = Tr(K), conforme [3].

R0 =
θ1 (ϑ1ϑ2 (bβ1 − (b − 1) (ϵ1 − ϵ2)) + d2 (bβ2ϑ1 − (b − 1)d1ϵ2) + d3 (d4 (bβ1 − bϵ1 + ϵ1) − bβ2ϑ1))

µ (d1d3 − ϑ1ϑ2) (d2d4 + ϑ1ϑ2)

3.1 Equilíbrio Livre da Doença
A condição de equilíbrio livre de infecção ocorre quando I1 = I2 = 0, indicando a ausência de

casos ativos. Nesse estado, a população se divide entre suscetíveis (S1) e vacinados (V ), correspon-
dendo ao ponto de equilíbrio E0 = ((1 − ξ)N, ξN, 0, 0, 0, 0, 0, 0, 0). A estabilidade local do modelo
é analisada por meio da matriz Jacobiana, calculada no ponto E0, caracterizando o cenário sem
infecção. Assim, obtemos:

J(Ē0) =



−b 0 d 0 0 d µ1ξ αρ
0 −b − θ1 β1ξ 0 0 β1ξ 0 0
0 θ1 f 0 0 0 0 0
0 0 a 0 0 a µ1(1 − ξ) α(1 − ρ)
0 0 m 0 −b − θ2 m 0 0
0 0 0 0 θ2 g 0 0
0 0 ω1 0 0 ω2 k 0
0 0 γ1 + µ1r 0 0 γ2 + µ1r r + τ −α − b

 (4)

Sendo a = δ1(ξ − 1) + µ1(1 − ξ), d = µ1ξ − β1ξ, f = −b − γ1 − µ − ω1, g = −b − γ2 − µ − ω2, k =
−b − µ1 − τ e m = δ1(1 − ξ). Ao calcular os autovalores da matriz Jacobiana, estabelecendo
que det[J(Ē0) − λI] = 0, obtemos o polinômio característico associado à matriz Jacobiana J(E0),
expresso da seguinte forma:

p(λ) = (λ + µ)2(−α − λ − µ)
[

(λ − f55)(λ − f66) [(λ − f22)(λ − f33) − f23θ1]

+ θ1 [f56 (f23θ1 − (λ − f22)(λ − f33)) − f26f53θ1]
]

(−λ − µ − µ2 − τ).
(5)

Os autovalores obtidos são λ1 = 0, λ2 = −b, λ3 = −(b + α) e λ4 = −(b + µ + τ). Como os
parâmetros são positivos, λ2, λ3 e λ4 são negativos. A estabilidade do sistema depende dos demais
autovalores, que são as soluções do polinômio característico (6).

λ4 + a1λ3 + a2λ2 + a3λ + a4 = 0 (6)

onde a1 = 2b−f−g+θ1+θ2, a2 = b2+θ1 (−β1ξ + b − f − g + θ2)+θ2(b−f−g−m)−2b(f+g)+fg,
a3 = −b2(f + g) − θ1 (b(f + g) + β1ξ (b − g + θ2) + θ2(f + g + m) − fg) − bθ2(f + g + m) + 2bfg +
fθ2(g + m) e a4 = b2fg + bfgθ1 + bfgθ2 + bfθ2m + β1bgθ1ξ + fgθ1θ2 + fθ1θ2m + β1gθ1θ2ξ.

Aplicamos o critério de Routh-Hurwitz [4] para n = 4, que exige:

a1 > 0, a3 > 0, a4 > 0 e a1a2a3 > a2
3 + a2

1a4. (7)
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Se essas condições forem satisfeitas, E(0) é localmente assintoticamente estável; caso contrário, é
instável.

4 Simulações Numéricas
Para as simulações numéricas, utilizamos MATLAB e o pacote ODE para resolver o sistema

de equações diferenciais. Investigamos a propagação de uma doença em uma população com
duas subpopulações (S1 e S2) de diferentes suscetibilidades, analisando o impacto das mudanças
comportamentais (ϑ) e da vacinação na epidemia. Consideramos uma doença hipotética com taxas
de transmissão β1, β2, δ1 e δ2, onde β1 > β2, δ1 > δ2 e β2 > δ1. Os parâmetros utilizados estão
na Tabela 1. Inicialmente, sem vacinação, analisamos o comportamento dos casos ativos sob três
cenários distintos de mudança comportamental (ϑ).

A Figura 2 mostra a evolução dos casos ativos ao longo do tempo (em dias), considerando
mudanças no comportamento social durante o surto. As simulações incluem três intervalos distintos
para ϑ1 e ϑ2, onde ϑ1 indica o aumento do distanciamento social e ϑ2 representa a reversão para
um comportamento sem restrições.

Figura 2: Comparação de casos ativos para ϑ1 = 0.07 e ϑ2 = 0.14. Fonte: Autor.

As curvas apresentam um pico inicial significativo devido à alta proporção da população em S1.
O distanciamento social (ϑ1) é introduzido em três períodos distintos (120º-200º, 140º-220º e 160º-
240º dia) e posteriormente reduzido (ϑ2) entre 200º-280º, 220º-300º e 240º-320º dias, representando
o relaxamento das medidas.

A implementação de ϑ1 reduz temporariamente os casos ativos, enquanto ϑ2 gera novos surtos,
evidenciando a menor adesão ao distanciamento. As oscilações indicam surtos secundários devido
à alternância de comportamentos e possível reinfecção. O gráfico confirma o papel essencial de ϑ1
na contenção da transmissão e de ϑ2 na reemergência de surtos.

A Figura 3 detalha essa evolução, ilustrando diferentes condições para as mudanças de com-
portamento social. Em todos os casos, a probabilidade ρ de transição entre S1 e S2 permanece a
mesma.
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Figura 3: Dinâmica de infectados para ϑ1 = ϑ2 = 0, ϑ1 = 0.07 e ϑ2 = 0.14. Fonte: Autor.

O gráfico (a) mostra a evolução dos casos sem mudanças no comportamento social (ϑ1 = 0
e ϑ2 = 0), resultando em um pico inicial acentuado seguido de oscilações e surtos secundários.
Nos gráficos (b), (c) e (d), diferentes períodos de distanciamento social (ϑ1 = 0.07) e sua reversão
(ϑ2 = 0.14) afetam a dinâmica da infecção, evidenciando que o momento da adoção dessas medidas
influencia a evolução da epidemia.

Os gráficos da Figura 3 detalham as transições da Figura 2, segmentando as fases de mudança
de comportamento social para uma análise mais precisa. A comparação reforça que o distancia-
mento (ϑ1) reduz temporariamente os casos, enquanto sua reversão (ϑ2) pode gerar novos surtos,
destacando a importância do timing na mitigação da epidemia.

A Figura 4 apresenta a evolução dos casos ativos para diferentes momentos de início da vaci-
nação: sem vacinação, vacinação iniciada no 4º mês, no 6º mês e no 12º mês.

Figura 4: Evolução dos casos ativos nos cenários com e sem vacinação. Fonte: Autor.
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Sem vacinação, o pico ocorre por volta do 160º dia, seguido de uma queda e oscilações menores.
Com vacinação no 4º mês, o pico reduz e ocorre no 140º dia, acelerando a estabilização. No 6º
mês, o pico permanece no 160º dia, mas com menos casos ativos. Já no 12º mês, o pico também
ocorre no 160º dia, porém com mais casos e estabilização tardia. A vacinação antes do pico reduz a
infecção e acelera a estabilização, destacando a importância de intervenções precoces na mitigação
da epidemia.

5 Considerações Finais
O modelo proposto combina vacinação, distanciamento social e mudanças comportamentais em

um único arcabouço matemático. As simulações mostram que a vacinação precoce reduz a inci-
dência da infecção e estabiliza o sistema, enquanto variações no distanciamento social influenciam
surtos secundários.

A análise indica que intervenções oportunas, como vacinação antes do pico epidêmico e distan-
ciamento social em momentos críticos, podem minimizar a propagação da infecção. A transição
entre diferentes condutas sociais torna o modelo mais realista e aplicável a cenários complexos.

Futuros estudos podem incorporar fatores como heterogeneidade etária, distribuição espacial e
impacto de variantes virais. A calibração com dados reais também pode aumentar a aplicabilidade
do modelo para embasar políticas de saúde pública.
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