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Abstract. This work investigates the influence of the carrying capacity on the replacement of
species S1 by species S2, with a focus on minimizing intervention costs. The problem is formulated
as an optimal control problem, in which the control actions correspond to impulsive releases of
individuals from species S2. The objective is to determine optimal release strategies that ensure
the eradication of S1 and the successful establishment of S2. Numerical results are provided to
illustrate the control strategies and to analyze how the carrying capacity affects the optimal release
policy.
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1 Introduction

The carrying capacity of an environment represents the maximum number of individuals that
a population can sustain over time, determined by factors such as resource availability, space, and
ecological interactions. In practice, however, each species experiences an effective carrying capac-
ity, which accounts not only for environmental limitations but also for interspecific interactions,
physiological traits, and adaptive mechanisms that influence how efficiently each population uti-
lizes available resources [6]. This concept plays a crucial role in population dynamics and species
competition, directly influencing which species can establish and thrive in a given habitat [7]. In
many ecological and environmental management scenarios, it becomes necessary to control popu-
lation equilibrium to promote the replacement of one species by another, whether for conservation
purposes, invasive species control, or ecosystem optimization [8].

In this work, we investigate the influence of the carrying capacity on the replacement of species
S1 by species S2, with a focus on minimizing intervention costs. The problem is formulated within
an optimal control framework, in which control actions consist of impulsive releases of individuals
from species S2. The objective is to determine optimal release strategies that ensure the eradication
of S1 and the successful establishment of S2 in an efficient manner. In this context, we consider
effective carrying capacities (K1 and K2), which reflect the actual ability of each species to exploit
available resources and maintain its population, rather than a uniform environmental limit. Thus,
we aim to understand how the carrying capacity affects species competition and to optimize the
resources required to achieve the desired replacement.
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The paper is structured as follows. In Section 2, we introduce the optimal control problem,
present the cost functional to be minimized, and discuss the impulsive competition model proposed
in [1]. Section 3 presents the numerical results, which illustrate the control strategies and highlight
the influence of the carrying capacity on the optimal release policy. Finally, Section 4 provides
concluding remarks, summarizing the main findings and outlining directions for future research.

2 Impulsive Optimal Control Problem
Consider the following impulsive differential equation model, which describes the competitive

dynamics between two species, S1 and S2. This model was proposed in [1], captures the effects of
ecological interactions and discontinuous perturbations in the system.

dS1(t)

dt
= S1(t)

(
ψ1 −

r1
K1

(S1(t) + S2(t))

)(
S1(t)

K0
− 1

)
− δ1S1(t),

dS2(t)

dt
= S2(t)

(
ψ2 −

r2
K2

(S1(t) + S2(t))

)
− δ2S2(t),

if t ̸= nτ, n = 1, 2, ..., N. (1)

{
S1(t

+) = S1(t),

S2(t
+) = S2(t) + un,

if t = nτ, n = 1, 2, ..., N. (2)

The model is considered with nonnegative initial conditions and positive parameters. For i = 1, 2,
ψi and δi represent the birth and mortality rates of species Si, respectively, while ri = ψi − δi
denotes the intrinsic growth rate. In addition, Ki is a parameter associated with the effective
carrying capacity for species Si. In this study, we assume that all parameters are independent of
population density.

The system (1) incorporates a frequency-dependent Allee effect in the first equation, affecting
species S1 [4, 5]. This effect is captured by the critical compensation term

(
S1

K0
− 1

)
, which directly

influences the recruitment of individuals in species S1. The parameter K0 > 0 (with 0 < K0 < K1)
represents the minimum viable population size (MVPS), i.e., the smallest population size required
for the persistence of species S1, a concept widely studied in models incorporating the Allee effect
[9, 10].

Furthermore, we assume that the birth rate exceeds the mortality rate for both populations,

ψ1 > δ1 and ψ2 > δ2, (3)

and that population S1 exhibits a higher survival capacity than S2, i.e.,

ψ2 < ψ1, δ2 > δ1, and r2 < r1. (4)

The impulsive subsystem (2) describes the release of individuals from species S2, where τ
represents the release period and un ∈ U denotes the number of individuals introduced at time
t = nτ . The control variable un is constrained by the available quantity of S2, so that the set of
admissible releases is U = [0, umax], with umax ≥ 0 denoting the maximum number of S2 individuals
that can be released at a given time.

The population of S1 immediately after the n-th release, at t = nτ+, is given by S1(t
+) =

lima→0+ S1(t+ a).
The results concerning the existence, uniqueness, positivity, and uniform boundedness of the

model solutions are presented in [1].
We now formulate an optimal control problem in which the model (1)-(2) serves as the control

system. The goal is to minimize the number of released individuals of species S2 while driving the
population of S1 below its survival threshold K0 (associated with the Allee effect).
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Mathematically, we seek to determine the sequence of optimal controls u∗ = (u∗n)
N
n=1, u

∗
n ∈ U,

that minimizes the cost functional.

J(u) = C1(S1(T )− (K0 − ϵ)) + C2

N∑
n=1

un, (5)

subject to the model (1)-(2). We denote this optimal control problem as P.
The term S1(T ) − (K0 − ϵ) in the objective functional enforces that the final population of

S1 remains below K0, its survival threshold, allowing a small tolerance ϵ > 0. The constants C1

and C2 represent the costs associated with the control strategy, while
∑N

n=1 un denotes the total
release effort to be minimized. This problem is formulated over a finite time horizon [0, T ], where
T defines the final intervention time. During this period, up to N releases can be performed, each
belonging to the admissible set U .

To ensure the existence of solutions for this optimal control problem, we must show that there
exists at least one element in U that satisfies (5) subject to the dynamical system (1)-(2). Therefore,
we establish the following proposition.

Proposition 2.1. There exists at least one n∗ such that u∗n ∈ U satisfies J(u), subject to (1)-(2).

Proof. Since the set U is compact and the functional J(u) is continuous (being a sum of continuous
functions), the Weierstrass theorem ensures the existence of a control u∗n ∈ U that minimizes
J(u).

Furthermore, having established the existence of at least one element in U that satisfies the op-
timal control problem, and considering that system (1)-(2) admits positive, unique, and uniformly
bounded solutions (for each initial condition), and that the cost functional is continuous in u, we
can apply Theorem (5.1) from Section III of [3]. Consequently, the existence of an optimal control
u∗ = (u∗n)

N
n=1, with u∗n ∈ U , for problem P is guaranteed.

Having ensured the existence of an optimal solution, the next section presents numerical results
analyzing the influence of the parameters K1 and K2, which denote the effective carrying capacities
for species S1 and S2, respectively.

3 Numerical Results
In this section, we present the numerical simulations of problem (P), illustrating the dynamics of

species S1 and S2 and the evolution of the optimal control for different values of the parameters K1

and K2, as detailed in Table 2. These parameters represent the effective carrying capacities of each
species and directly influence their competitive interaction. The purpose of these simulations is to
investigate how different parameter configurations affect the optimal release strategy of individuals
from S2 to achieve the replacement of S1.

For these simulations, we consider a fixed release period of τ = 7 days, a final intervention
time of T = 360 days, and a control cost weighting factor of C1 = 1 and C2 = 1

2 . The parameter
values used are presented in Table 1 ([4]). The optimal control problem was solved using the Gekko
package, a Python library for dynamic optimization, optimal control, and nonlinear programming
[2].

With this approach, we analyze the sensitivity of the problem with respect to K1 and K2,
examining how variations in the effective carrying capacities influence the efficiency of the release
strategies and the feasibility of replacing S1 by S2.

The results of the numerical simulations presented in Table 2 show the relationship between the
parameters K1 and K2, the final intervention time T = 360 days, and the obtained values for the
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Table 1: Parameters for the model (1)-(2)

.

Parameter Value Range Units Description
ψ1 0.32667 0.28 - 0.38 day−1 Birth rate of species S1

ψ2 0.21333 0.18 - 0.25 day−1 Birth rate of species S2

δ1 0.03333 1/8 - 1/42 day−1 Death rate of species S1

δ2 0.06666 2/8 - 2/42 day−1 Death rate of species S2

K0 30, 60, 60 - - Threshold S1 population for species interaction

total release sum
∑
un and the minimum cost min J(u). When K1 increases from 374 to 674 (with

K2 = 400), the total number of released individuals (
∑
un = 4168.64) rises significantly, reflecting

the challenge of replacing a more abundant resident population. Conversely, when increasing K2

from 400 to 674 (with K1 = 674),
∑
un decreases to 1152.32, and the minimum cost drops to

576.16. This contrast demonstrates that a higher effective carrying capacity for S2 facilitates its
establishment, thereby reducing the required intervention effort. Hence, the parameters K1 and
K2 together with the initial dominance of S1 directly influence population dynamics and control
efficiency.

Table 2: Numerical results for the optimization of problem P.

K1, K2, K0
T = 360∑

un min J(u)

374, 300, 30 1236.87 618.44
674, 400, 60 4168.64 2084.32
674, 674, 60 1152.32 576.16
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Figure 1: (a) Trajectory of S1 and S2 under optimal control for K1 = 374 and K2 = 300, with initial
condition (K1, 0). (b) Optimal control u∗ associated with the simulation in (a). Source: Figures by the
authors.

Figures 1-3, associated with the results in Table 2, illustrate the optimal solutions for each
combination of K1 and K2 in the population dynamics of S1 and S2 over time, along with the
corresponding optimal impulsive controls u∗n. All simulations consider an initial condition in which
the system is entirely dominated by S1, with no individuals of S2 present. This initial configuration
is crucial, as the density of S1 determines the release intensity required for S2 to establish itself
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competitively. The optimal strategy prioritizes a rapid reduction of S1 while ensuring a stable
establishment of S2, with more intensive releases at the beginning of the intervention followed by
a progressive decrease over time, an approach that minimizes the total cost while achieving the
desired outcome.
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Figure 2: (c) Trajectory of S1 and S2 under optimal control for K1 = 674 and K2 = 400, with initial
condition (K1, 0). (d) Optimal control u∗ associated with the simulation in (c). Source: Figures by the
authors.
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Figure 3: (e) Trajectory of S1 and S2 under optimal control for K1 = 674 and K2 = 674, with initial
condition (K1, 0). (f) Optimal control u∗ associated with the simulation in (e). Source: Figures by the
authors.

These findings demonstrate the sensitivity of the optimal strategy to the model parameters,
particularly K1 and K2, highlighting that the success and cost of population replacement depend
not only on the initial density of S1 but also on the effective carrying capacity available to S2.
The proposed approach enables a precise quantification of these effects and provides a valuable
framework for supporting decision-making in biological intervention programs.
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4 Final Considerations
Our results demonstrate that the effective carrying capacities (K1, K2) directly determine the

intervention effort required for population replacement. Higher K1 values demand significantly
larger releases of S2 to overcome the competitive advantage of S1, whereas increased K2 facilitates
the establishment of S2 with reduced effort.

The optimal strategy adapts to the system parameters by scheduling releases to maximize their
impact during the most critical phases of S1 suppression. These results provide valuable insights for
designing intervention plans that support the development of efficient biological control strategies.

Furthermore, the proposed method offers an effective approach to minimizing the total inter-
vention cost within an impulsive control framework. Unlike most studies that assume continuous
release strategies, the use of impulsive control provides a more realistic and operationally feasible
perspective for practical implementation.

Future studies could investigate the model’s sensitivity to other system parameters, such as
species mortality rates and their impact on control effectiveness. Additionally, incorporating a
parameter that accounts for non-natural mortality—such as deaths caused by external factors
like insecticide use or adverse environmental conditions—would enable a more comprehensive and
realistic assessment of the optimal control problem. Such extensions would contribute to the
development of more robust and effective strategies for replacing species S1 with S2.
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