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1 Introduction
Aubin and Frankowska, in [1], point out that in the second half of the twentieth century, the

Polish mathematician Kuratowski gave the concept of multifunctions its proper significance (see
[6]), while the renowned Bourbaki group focused solely on the study of functions as they are
understood today, treating multifunctions as a particular case of the latter.

Although the concept of multifunctions was relegated to the background for many years, its wide
range of applications led several mathematicians in the 1980s, including Aubin and Frankowska,
to recognize the need to revisit the study of multifunctions.

More recently, in 2022, Leal et al. [7] introduced the concept of the single-level derivative for
interval-valued functions, an idea developed based on Single-Level Constraint Interval Arithmetic
(SLCIA), originally proposed in 2014 by Chalco, Lodwick and Bede [2].

In this context, observing an apparent similarity between an interval-valued function and a
compact convex-valued multifunction, the objective of this study is to establish a relationship
between the single-level derivative of an interval-valued function and the contingent derivative of
a multifunction.

This paper is organized as follows: Section 2 defines the contingent derivative of multifunctions.
Section 3 presents the single-level derivative for interval-valued functions. In Section 4, the concept
of the interval contingent derivative for compact convex-valued multifunctions is introduced and
compared with the single-level derivative for interval-valued functions. Finally, concluding remarks
are provided.

2 Contingent Derivative of Multifunctions
Definition 2.1. [3] Let X and Y be topological spaces. F is a multifunction from X to Y if to
each x ∈ X corresponds a subset F (x) of Y .
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A multifunction F from X to Y will be denoted by F : X ⇝ Y .

Definition 2.2. [1] Let X and Y be metric spaces. A graph of a multifunction F from X to Y is
denoted by Graph(F ) and is defined as:

Graph(F ) = {(x, y) ∈ X × Y | y ∈ F (x)} . (1)

A multifunction F : X ⇝ Y is characterized by its graph.

Remark 2.1. A function f : X → Y can be considered as a special multifunction F : X ⇝ Y if
F (x) = {f(x)}, i.e., if to each x ∈ X corresponds to a singleton.

Example 2.1. Let F : R⇝ R be a multifunction defined by:

F (x) = [1, 2]|x| =

{
[x, 2x], if x ≥ 0,

[−x,−2x], if x < 0.

Thus,
Graph(F ) =

{
(x, y) ∈ R2 / y ∈ [1, 2]|x|

}
.

Figure 1: Graph(F ). Source: Authors

2.1 Contingent Derivative

In this section, we present some results on the analysis of multifunctions, considering an interval-
valued function as a multifunction.

Definition 2.3. [4] Let (X, ∥ . ∥) be a real normed space, S ⊂ X,S ̸= ∅ and be x ∈ S. We call S
the contingent cone in x to the set of vectors h ∈ X, such that there exist sequences {λn} ⊂ R+

and {xn} ⊂ S that satisfy:

lim
n→∞

xn = x and lim
n→∞

λn (xn − x) = h .

We will denote the cone contingent to S in x by TS (x), then the above can be expressed symbolically
as:

TS(x) = {h ∈ X | ∃{λn} ⊂ R+,∃{xn} ⊂ S, xn → x and λn (xn − x) → h} .

The vector h ∈ TS(x) is called the tangent vector to S at x.

Remark 2.2. According to Khan et al. [5], the contingent cone is also called the Bouligand tangent
cone, or simply the tangent cone.

Next, we present the contingent derivative for a multifunction.
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Definition 2.4. [1] Let X,Y be normed spaces, and let F : X ⇝ Y be a multifunction. The
contingent derivative of F on (x, y) ∈ Graph(F ) is a multifunction from X to Y , denoted by
DF (x, y), is defined as:

Graph(DF (x, y)) = TGraph(F )(x, y) . (2)

Example 2.2. Consider the example 2.1, it follows that:

1. Graph(DF (0, 0)) = TGraph(F )(0, 0) = Graph(F ).

2. Graph(DF (2, 2)) = TGraph(F )(2, 2) = {(x, y) ∈ R2 / y ≥ x} .

3. Graph(DF (2, 3)) = TGraph(F )(2, 3) = R2 .

4. Graph(DF (2, 4)) = TGraph(F )(2, 4) = {(x, y) ∈ R2 / y ≤ 2x} .

3 Single-Level Derivative of an Interval-Valued Function

3.1 Simple-Level Constrained Interval Arithmetic (SLCIA)

In 2014, Chalco, Lodwick and Bede [2] proposed the simple-level constrained interval arithmetic
(SLCIA) as a variant of the constrained interval arithmetic (CIA) developed by Lodwick, see [8].
In these arithmetic properties, we can observe that the use of a single parameter λ is proposed
for the constrained parametric representation involved in an operation, and it is also important to
mention that the use of this arithmetic is appropriate when the values within the intervals vary in
the same way.

Definition 3.1. [2] Each interval A = [a, a] ∈ I, where I is the interval space, is associated with
a continuous function A : [0, 1] → R, called the constrained function associated with A, such that:

A =

[
min

0≤λ≤1
A(λ), max

0≤λ≤1
A(λ)

]
. (3)

Definition 3.2. [2] Given an interval A = [a, a]:

1. The increasing convex constraint function A : [0, 1] → R associated with the interval A is
defined as:

A(λ) = (1− λ)a+ λa = a+ λ (a− a) , 0 ≤ λ ≤ 1. (4)

2. The decreasing convex constraint function A : [0, 1] → R associated with the interval A is
defined as:

A(λ) = λa+ (1− λ)a = (a− a)λ+ a, 0 ≤ λ ≤ 1. (5)

Remark 3.1. From now on, each interval will be associated with its increasing convex constraint
function, which will be referred to as just constraint function.

3.2 SL-Operations

Given the intervals A = [a, a] and B =
[
b, b

]
with constraint functions A(λ) and B(λ), re-

spectively, and given a scalar α, the constrained arithmetic operations on single levels denoted as
SL-operations are defined as follows:
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1. SL-Multiplication of an interval A and a scalar α is defined as:

α⊙A =

[
min

0≤λ≤1
(α ·A(λ)) , max

0≤λ≤1
(α ·A (λ))

]
= [min {α · a, α · a} ,max {α · a, α · a}] . (6)

2. The SL-Operation A ∗B is defined as:

A ∗B =

[
min

0≤λ≤1
(A(λ) ∗B(λ)) , max

0≤λ≤1
(A(λ) ∗B(λ))

]
, (7)

where ∗ ∈ {⊕,⊖,⊗,⊘} .

Remark 3.2. Let A = [a, a] and B = [b, b] be intervals, then: ll

1. A⊕B =
[
a+ b, a+ b

]
.

2. A⊖B =
[
min{a− b, a− b},max{a− b, a− b}

]
.

3. A⊘B exists whenever 0 /∈ B.

3.3 SL-Derivative

Now, we review the concept of the single-level derivative of an interval-valued function, proposed
by Leal et al. in [7], defined on the basis of single-level constrained interval arithmetic (SLCIA).
Some theorems and an example are also presented.

Definition 3.3. [9] A function of the form F : [a, b] → I defined by F (x) =
[
f(x), f(x)

]
∈ I, such

that f(x) ≤ f(x),∀x ∈ [a, b] is called an interval-valued function.

Definition 3.4. [7] Let F : [a, b] → I be an interval-valued function, x0 ∈]a, b[ and h ̸= 0 a real
number such that x0 + h ∈]a, b[, then the single-level derivative of F at x0, which we denote by
DSLF (x0), is defined as DSLF (x0):

DSLF (x0) = lim
h→0

1

h
⊙ (F (x0 + h)⊖ F (x0)) . (8)

If the above limit exists, F is said to be single-level differentiable (SL-differentiable, as short) at
x0.

Theorem 3.1. [7] Let F : T → I be an interval-valued function defined by F (x) =
[
f(x), f(x)

]
∈ I,

where T is an open or closed interval. If f and f are differentiable functions at x0 ∈ T , then F is
SL-differentiable at x0 such that:

DSLF (x0) =

[
min

0≤λ≤1

{
(1− λ)f ′(x0) + λf

′
(x0)

}
, max
0≤λ≤1

{
(1− λ)f ′(x0) + λf

′
(x0)

}]
. (9)

Theorem 3.2. Let F : T → I be an interval-valued function defined by F (x) =
[
f(x), f(x)

]
∈ I.

If f and f are functions whose lateral derivatives exist in x0 ∈ T , then:
i) F is SL-differentiable on the right at x0 and

DSLF+(x0) =

[
min

0≤λ≤1

{
(1− λ)f ′

+
(x0) + λf

′
+(x0)

}
, max
0≤λ≤1

{
(1− λ)f ′

+
(x0) + λf

′
+(x0)

}]
. (10)

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0297 010297-4 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0297


5

ii) F is SL-differentiable on the left at x0 and

DSLF−(x0) =

[
min

0≤λ≤1

{
(1− λ)f ′

−
(x0) + λf

′
−(x0)

}
, max
0≤λ≤1

{
(1− λ)f ′

−
(x0) + λf

′
−(x0)

}]
. (11)

Theorem 3.3. Let F : T → I be an interval-valued function defined by F (x) =
[
f(x), f(x)

]
∈ I,

then F is SL-differentiable in x0 ∈ T if and only if the right and left single-level derivatives of F
in x0 exist, and are equal, i.e. DSLF+(x0) = DSLF−(x0).

Example 3.1. Given the interval-valued function F : R → I defined by F (x) = [|x|, 2|x|], it follows
that:

a) If x > 0, F (x) = [x, 2x], and since f(x) = x and f(x) = 2x are differentiable functions at
x > 0, by Theorem 3.1 it follows that:

DSLF (x) =

[
min

0≤λ≤1
{λ+ 1} , max

0≤λ≤1
{λ+ 1}

]
= [1, 2].

b) Similarly, if x < 0, F (x) = [−x,−2x], then ∀ x < 0 it follows that:

DSLF (x) =

[
min

0≤λ≤1
{−λ− 1} , max

0≤λ≤1
{−λ− 1}

]
= [−2,−1] .

c) The interval-valued function F (x) = [|x|, 2|x|] is not SL-differentiable at x = 0. Since:

i) DSLF+(0) =

[
min

0≤λ≤1
F ′
+(λ)(0), max

0≤λ≤1
F ′
+(λ)(0)

]
=

[
min

0≤λ≤1
{λ+ 1}, max

0≤λ≤1
{λ+ 1}

]
= [1, 2].

ii) DSLF−(0) =

[
min

0≤λ≤1
F ′
−(λ)(0), max

0≤λ≤1
F ′
−(λ)(0)

]
=

[
min

0≤λ≤1
{−λ− 1}, max

0≤λ≤1
{−λ− 1}

]
=

[−2,−1].

Therefore, according to Theorem 3.3 F is not SL-differentiable in 0.

4 Interval Contingent Derivative
From the Examples 2.2 and 3.1 it can be seen that the contingent derivative of a multifunction,

in general, results in a non-compact set, while determining the single-level derivative of an interval-
valued function results in an interval; therefore, there is no direct relationship between the two
derivatives. However, in order to establish more clearly a relationship between these derivatives,
the concept of the Interval Contingent Derivative is proposed below.

Definition 4.1. Let X,Y be normed spaces, and F : X ⇝ Y be a multifunction given by
F (x) = [f(x), f(x)]. The interval contingent derivative of F at x ∈ Dom(F ) is denoted and defined
by:

Graph(DF (x)) =
⋂

y∈[f(x),f(x)]

TGraph(F )(x, y). (12)

Example 4.1. Considering the multifunction of the Example 2.1, then:

Graph(DF (1)) =
⋂

y∈[1,2]

TGraph(F )(1, y),
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whose graph is:

Figure 2: Graph(DF (1)). Source: Authors

From Example 3.1 it follows that:

DSLF (x) =

{
[1, 2], if x > 0,

[−2,−1], if x < 0 .

Then, DSLF (1) = [1, 2]. It can be seen that the graph of the interval contingent derivative at
x = 1 is the set of points of R2 bounded by the straight lines y = x and y = 2x, ∀ x > 0, whose
slopes vary in the interval [1, 2], which coincides with the result provided by the single derivative
at that point, i.e., DSLF (1) = [1, 2].

5 Final Considerations
Based on the findings presented in this article, there is no direct relationship between the

contingent derivative of a compact convex-valued multifunction and the single-level derivative
of the same multifunction when considered as an interval-valued function. However, through the
concept of the interval contingent derivative, it is observed that, at a given point, its graph consists
of a set of points in R2 bounded by straight lines whose slopes vary within a range of values that
coincide with the result provided by the single-level derivative of the multifunction considered as
an interval-valued function.
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