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Convergência Compacta de Operadores
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Resumo. Neste trabalho estudamos propriedades de operadores com resolvente compacto. Com
base na teoria da convergência compacta, analisamos condições que garantem a limitação do ope-
rador resolvente, a convergência de certas famílias de operadores e uma estimativa para a diferença
entre operadores resolventes em diferentes contextos, sob hipóteses específicas.

Palavras-chave. Convergência compacta de operadores. Operadores perturbados. Operadores
com resolvente compacto.

1 Introdução
Neste trabalho estudamos uma família de espaços de Hilbert {Xε}, para ε ∈ [0, ε0]. Denotamos

por {Aε}ε∈[0,ε0] uma família geral de operadores tais que, para cada ε ∈ [0, ε0], Aε : D(Aε) ⊂
Xε → Xε é autoadjunto, positivo e tem resolvente compacto.

Esta família de operadores pode surgir em diversos contextos. Em [1], a motivação para a análise
destes operadores é o estudo da convergência da família de soluções uε ∈ H1(Rε) do problema∫

Rε

∇uε · ∇v + βuv =

∫
Rε

f(uε)v para todo v ∈ H1(Rε), ε > 0, (1)

no domínio fino
Rε = {(x, y) ∈ R1+n : x ∈ (0, 1), y ∈ εa(x)B1}, (2)

onde B1 é a bola unitária com centro na origem em Rn. A função a : [0, 1] → R é de classe C1,
a(0) = 0 e a(x) > 0 se x ∈ (0, 1]. A função f : R → R é de classe C2 e satisfaz |f(u)| + |f ′(u)| +
|f ′′(u)| ≤ K para alguma constante K > 0 e para todo u ∈ R.

As provas apresentadas são análogas às demonstradas em [2] e [3]. Em [3], são provados resulta-
dos para uma família de espaços de Hilbert {Xε}, para ε ∈ [0, ε0], e os operadores considerados são
tais que Aε é autoadjunto, positivo e possui resolvente compacto, para todo ε ∈ (0, ε0]. Considera-
se que o operador A0 : D(A0) ⊂ X0 → X0 está definido em um espaço X0 de dimensão finita.
Neste trabalho detalhamos a demonstração de alguns detalhes.

Denotamos por
σ(Aε) = {λε

1, λ
ε
2, · · · } (3)

o espectro do operador Aε com 0 < λε
1 ≤ λε

2 ≤ · · · ≤ λε
n ≤ · · · .

Observação 1.1. λε
n → +∞ quando n → ∞ porque Aε possui resolvente compacto.

Em decorrência das propriedades de Aε, o espectro é formado apenas pelos autovalores do
operador, isto é, o espectro pontual de Aε (ver [4], p. 248). Considere uma família ortonormal
{φε

j}∞j=1 de autofunções do operador Aε associada a {λε
j}∞j=1. Para cada j ∈ N, denotamos por
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Qε
j a projeção ortogonal sobre o subespaço gerado span[φε

1, · · · , φε
j ]. Com isto, de acordo com [5],

para todo α ∈ [0, 1], o operador Aα
ε : D(Aα

ε ) ⊂ Xε → Xε é dado por

Aα
ε u =

∞∑
j=1

(λε
j)

αQε
ju para todo u ∈ D(Aε), (4)

D(Aα
ε ) =

{
u ∈ Xε :

∞∑
j=1

(λε
j)

2α||Qε
ju||2Xε

< ∞
}
. (5)

A cada operador Aε associamos a família de espaços de potências fracionárias {Xα
ε }α∈[0,1] definida

por Xα
ε = D(Aα

ε ). O operador Aα
ε é positivo e autoadjunto, Xα

ε é um espaço de Hilbert com o
produto interno < u, v >Xα

ε
=< Aα

ε u,A
α
ε v >Xε

e norma definida por

||u||Xα
ε
= ||Aα

ε u||Xε =

( ∞∑
j=1

(λε
j)

2α||Qε
ju||2Xε

) 1
2

. (6)

Observamos que, dependendo das propriedades do operador e do domínio, a escala de espaços de
potências fracionárias pode variar. Por exemplo, no caso estudado em [1], o espaço X0

ε corresponde
a H1(Rε).

Assumimos que, para algum α ∈ [0, 1] fixado, existem duas famílias de operadores lineares
Eα

ε : Xα
0 → Xα

ε e Mα
ε : Xα

ε → Xα
0 , com ε ∈ (0, ε0], tais que

• (P1) Mα
ε ◦ Eα

ε = IXα
0
,

• (P2) ||Eα
ε u||Xα

ε
→ ||u||Xα

0
quando ε → 0,

• (P3) ||Eα
ε ||L(Xα

0 ,Xα
ε ), ||Mα

ε ||L(Xα
ε ,Xα

0 ) ≤ C, onde C > 0 é uma constante independente de ε.

Desta forma Eα
ε é injetor e Mα

ε é sobrejetor. Além disso

C−1||u||Xα
0
≤ ||Eα

ε u||Xα
ε
≤ C||u||Xα

0
(7)

para qualquer ε ∈ (0, ε0].

1.1 Convergência Compacta

Utilizaremos os seguintes conceitos referentes à convergência de operadores.

Definição 1.1. Uma sequência {uε}ε∈(0,ε0], com uε ∈ Xα
ε , é dita E−convergente para uma função

u ∈ Xα
0 se ||uε − Eα

ε u||Xα
ε
→ 0 quando ε → 0. Denotamos por uε E−→ u.

Definição 1.2. Considere uma sequência {εn}n∈N tal que εn → 0 quando n → ∞. Uma sequência
{un}n∈N, com un ∈ Xα

εn , é chamada E−relativamente compacta se para cada subsequência {un′}
existe outra subsequência {un′′} e um elemento u ∈ Xα

0 tal que un′′
E−→ u. Uma família {uε}, onde

uε ∈ Xα
ε , é dita E−relativamente compacta se cada subsequência {un}, com un ∈ Xα

εn e εn → 0,
é E−relativamente compacta.

Definição 1.3. Dizemos que uma família de operadores {Bε : D(Bε) ⊂ Xε → Xε}ε∈[0,1] converge

para B0 : D(B0) ⊂ X0 → X0 quando ε → 0 se Bεu
ε E−→ B0u sempre que uε E−→ u ∈ Xα

0 . Denotamos
por Bε

EE−−→ B0.
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Definição 1.4. Dizemos que uma família de operadores compactos {Bε : D(Bε) ⊂ Xε → Xε}ε∈[0,1]

converge compactamente para um operador B0 : D(B0) ⊂ X0 → X0 se para cada família {uε},
com ||uε||Xα

ε
≤ 1, a família {Bεu

ε} é E−relativamente compacta e Bε
EE−−→ B0. Escrevemos

Bε
CC−−→ B0.

Lema 1.1. Fixe α ∈ [0, 1] e assuma que A−1
ε

CC−−→ A−1
0 . Valem as afirmações

• ||A−1
ε ||L(Xα

ε ) ≤ C1 para alguma constante C1 > 0 independente de ε.

• Dado um conjunto compacto K ⊂ ρ(−A0), temos que K ⊂ ρ(−Aε) para ε suficientemente
pequeno e

sup
ε∈(0,ε0]

sup
λ∈K

||(λ+Aε)
−1||L(Xε,Xα

ε ) ≤ C2 (8)

para alguma constante C2 independente de ε. Além disso,

(λ+Aε)
−1 CC−−→ (λ+A0)

−1. (9)

Demonstração. Se a primeira afirmação não é válida, podemos supor que existem sequências εk → 0
e {uεk}k∈N com uεk ∈ Xα

εk
tais que ||uεk ||Xα

εk
= 1 e ||A−1

εk
uεk ||Xα

εk
→ ∞ quando k → ∞. Desta

forma, temos que {A−1
εk

uεk} não pode ser E−relativamente compacta, o que contradiz a hipótese

de que A−1
ε

CC−−→ A−1
0 . Portanto ||A−1

ε ||L(Xα
ε ) ≤ C1.

Suponha agora que o segundo resultado não é válido. Assim, existe sequência εn → 0 tal que
σ(−Aεn) ∩ K ̸= ∅. Portanto, podemos tomar λn ∈ σ(−Aεn) ∩ K tal que λn → λ ∈ K, e um
elemento uεn ∈ Xεn com ||uεn ||Xα

εn
= 1 tal que uεn = −λnA

−1
εn uεn . Como ||uεn ||Xα

εn
= 1, a família

{A−1
εn uεn} é E−relativamente compacta. Portanto, existe subsequência, que podemos denotar por

{εn}, tal que A−1
εn uεn E−→ u0 para algum u0 ∈ Xα

0 .
Se λ = 0, então

||uεn ||Xα
εn

= || − λnA
−1
εn uεn ||Xα

εn
≤ |λn|C1 → 0 (10)

quando n → ∞, de onde obtemos um absurdo, pois ||uεn ||Xα
εn

= 1.

Suponha que λ ̸= 0. Como λn → λ, vemos que −λnA
−1
εn uεn E−→ −λu0. Com isto temos que

uεn E−→ −λu0 e, pela convergência compacta, A−1
εn uεn E−→ A−1

0 (−λu0), de onde concluímos que

−λεnA
−1
εn uεn E−→ −λA−1

0 (−λu0), (11)

e assim
−λu0 = −λA−1

0 (−λu0) ⇒ −A0u
0 = λu0. (12)

Desta forma λ ∈ K ∩ σ(−A0), o que é absurdo. Logo K ⊂ ρ(−Aε) para todo ε ∈ [0, ε0], para
algum ε0 > 0.

Para provar a estimativa (8), note que, se λ = 0, o resultado é válido em decorrência do primeiro
item.

Considere então λ ̸= 0 e suponha que não existe C > 0 tal que

sup
ε∈(0,ε0]

sup
λ∈K

||(λ+Aε)
−1||L(Xε,Xα

ε ) ≤ C. (13)

Vamos provar que, para todo ε suficiente pequeno,

sup
ε∈(0,ε0]

sup
λ∈K

||(I + λA−1
ε )−1||L(Xε,Xα

ε ) ≤ C. (14)
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Observe que
(λ+Aε) = Aε(I + λA−1

ε ), (15)

logo
A−1

ε (λ+Aε) = (I + λA−1
ε ) (16)

e assim
(I + λA−1

ε )−1 = (λ+Aε)
−1Aε. (17)

Portanto existe (I + λA−1
ε )−1 e assim Ker(I + λA−1

ε ) = {0}. Pela alternativa de Fredholm para
operadores compactos, temos que Im(I + λA−1

ε ) = Xα
ε . Assim, basta provar que existem C > 0 e

ε0 > 0 tais que, para todo ε ∈ [0, ε0],

||(I + λA−1
ε )uε||Xα

ε
≥ 1

C
para todo uε ∈ Xα

ε com ||uε||Xα
ε
= 1. (18)

Se isto não ocorre, então para todo m ∈ N existe uεm , com ||uεm ||Xα
εm

= 1, εm → 0, tal que

||(I +λA−1
εm)uεm ||Xα

εm
≤ 1

m
. Pela convergência compacta, sabemos que existe subsequência tal que

A−1
εmuεm E−→ v e portanto λA−1

εmuεm E−→ λv. Note que

||uεm + λEα
ε v||Xα

ε
≤ ||uεm + λA−1

εmuεm ||Xα
ε
+ ||(−1)(λA−1

εmuεm − λEα
ε v)||Xα

ε
. (19)

Dado δ > 0, podemos tomar m1 de modo que a primeira parcela seja inferior a δ
2 para todo

m ≥ m1. Da E−convergência sabemos que existe m2 tal que a segunda parcela também é inferior
a δ

2 para todo m ≥ m2. Portanto
||uεm + λEα

ε v||Xα
ε
≤ δ (20)

para todo m ≥ max{m1,m2}. Com isto concluímos que uεm E−→ −λv. Daí

λA−1
0 (−λv) = λv ⇒ −A0v = λv, (21)

o que não pode ocorrer uma vez que λ ∈ K ⊂ ρ(−A0).
Portanto existe ε0 tal que, para todo ε ∈ [0, ε0),

||(λ+Aε)
−1||L(Xε,Xα

ε ) ≤ ||(I + λA−1
ε )−1||L(Xε,Xα

ε )||A−1
ε ||L(Xα

ε ) ≤ C. (22)

Para provar que (λ + Aε)
−1 converge compactamente para (λ + A0)

−1, tome uma sequência
{uε} tal que ||uε||Xα

ε
≤ 1 e denote vε = (I + λA−1

ε )−1uε. Desta forma,
(λ+Aε)

−1uε = A−1
ε vε. De fato, basta observar que

(λ+Aε)(A
−1
ε (I + λA−1

ε )−1) = λA−1
ε (I + λA−1

ε )−1 + (I + λA−1
ε )−1

= (I + λA−1
ε )(I + λA−1

ε )−1 = I.
(23)

Como uε e (I+λA−1
ε )−1 são limitados, temos que {vε} é limitado. Podemos então assumir que

(λ+Aε)
−1uε = A−1

ε vε
E−→ v0 (24)

tomando subsequência se necessário. Isso ocorre porque A−1
ε

CC−−→ A−1
0 e isso implica que a sequên-

cia {A−1
ε vε} é E−relativamente compacta.

Seja
zε = (I + λA−1

ε )−1A−1
ε uε. (25)

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0266 010266-4 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0266


5

Observe que
(I + λA−1

ε )−1A−1
ε = (Aε(I + λA−1

ε ))−1 = (Aε + λ)−1, (26)

logo
zε = (I + λA−1

ε )−1A−1
ε uε = (λ+Aε)

−1uε E−→ v0. (27)

Se uε E−→ u0, sabemos que A−1
ε uε E−→ A−1

0 u0. Por outro lado,

A−1
ε uε = (I + λA−1

ε )zε
E−→ v0 + λA−1

0 v0 = (I + λA−1
0 )v0. (28)

Desta forma A−1
0 u0 = (I + λA−1

0 )v0 ⇒ v0 = (λ + A0)
−1u0 e está provada a convergência

compacta.

Fixando α ∈ [0, 1], suponha que A−1
ε

CC−−→ A−1
0 e que existe função positiva e crescente τ :

[0, ε0] → [0,∞) tal que τ(0) = 0 e

||A−1
ε − Eα

ε A
−1
0 Mα

ε ||L(Xε,Xα
ε ) ≤ τ(ε). (29)

Lema 1.2. Se λ ∈ ρ(−Aε) é tal que λ /∈ (−∞,−λ0
1], então existe ϕ ∈ (π2 , π) tal que

λ ∈ Σλ0
1,ϕ

\Br(−λ0
1) = {µ ∈ C : |arg(µ+ λ0

1)| ≤ ϕ}\{µ ∈ C : |µ+ λ0
1| ≤ r} (30)

para algum r > 0 pequeno. Além disso, se K ⊂ ρ(−Aε) é um compacto, vale a estimativa

||(λ+Aε)
−1 − Eα

ε (λ+A0)
−1Mα

ε ||L(Xε,Xα
ε ) ≤ Cτ(ε) para todo λ ∈ K, (31)

onde C > 0 é uma constante independente de ε.

Demonstração. Provaremos que

Aα
ε ((Aε + λ)−1 − Eα

ε (A0 + λ)−1Mα
ε )

=Aε(Aε + λ)−1Aα
ε (A

−1
ε − Eα

ε A
−1
0 Mα

ε )(I − Eα
ε λ(A0 + λ)−1Mα

ε ).
(32)

Primeiramente, reescrevemos a igualdade como

Aα
ε ((Aε + λ)−1 − Eα

ε (A0 + λ)−1Mα
ε )

=(I − λ(Aε + λ)−1)Aα
ε (A

−1
ε − Eα

ε A
−1
0 Mα

ε )(I − Eα
ε λ(A0 + λ)−1Mα

ε ).
(33)

Note que

(I + λA−1
ε )(I − λ(Aε + λ)−1)

=I − λ(Aε + λ)−1 + λA−1
ε (I − λ(Aε + λ)−1)

=Aε(Aε + λ)−1 + λA−1
ε (I − λ(Aε + λ)−1)

=Aε(Aε + λ)−1 + λ(Aε + λ)−1 = I.

(34)

Portanto a propriedade (32) vale se e somente se

(I + λA−1
ε )Aα

ε ((Aε + λ)−1 − Eα
ε (A0 + λ)−1Mα

ε )

=Aα
ε (A

−1
ε − Eα

ε A
−1
0 Mα

ε )(I − Eα
ε λ(A0 + λ)−1Mα

ε ).
(35)

Por ([5], seção 1.4), temos que Aα
εAε = AεA

α
ε na intersecção dos domínios dos operadores.

Desta forma
A−1

ε Aα
ε = Aα

εA
−1
ε . (36)
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Para o lado esquerdo da igualdade (35) utilizamos

I + λA−1
ε = A−1

ε (Aε + λ) (37)

para escrever

(I + λA−1
ε )Aα

ε ((Aε + λ)−1 − Eα
ε (A0 + λ)−1Mα

ε )

=A−1
ε (Aε + λ)Aα

ε [(Aε + λ)−1 − Eα
ε (A0 + λ)−1Mα

ε ]

=A−1
ε Aα

ε −A−1
ε (Aε + λ)Aα

εE
α
ε (A0 + λ)−1Mα

ε

=A−1
ε Aα

ε −Aα
εE

α
ε (A0 + λ)−1Mα

ε −A−1
ε λAα

εE
α
ε (A0 + λ)−1Mα

ε .

(38)

Desenvolvendo o lado direito da igualdade (35) obtemos

Aα
ε (A

−1
ε − Eα

ε A
−1
0 Mα

ε )(I − Eα
ε λ(A0 + λ)−1Mα

ε )

=Aα
εA

−1
ε −Aα

εE
α
ε A

−1
0 Mα

ε −Aα
εA

−1
ε Eα

ε λ(A0 + λ)−1Mα
ε +Aα

εE
α
ε A

−1
0 λ(A0 + λ)−1Mα

ε

=Aα
εA

−1
ε −Aα

εE
α
ε A

−1
0 Mα

ε −Aα
εA

−1
ε Eα

ε λ(A0 + λ)−1Mα
ε +Aα

εE
α
ε A

−1
0 (I −A0(A0 + λ)−1)Mα

ε

=Aα
εA

−1
ε −Aα

εA
−1
ε Eα

ε λ(A0 + λ)−1Mα
ε −Aα

εE
α
ε A

−1
0 (I − I +A0(A0 + λ)−1)Mα

ε

=Aα
εA

−1
ε −Aα

εA
−1
ε Eα

ε λ(A0 + λ)−1Mα
ε −Aα

εE
α
ε (A0 + λ)−1Mα

ε

=A−1
ε Aα

ε −Aα
εE

α
ε (A0 + λ)−1Mα

ε −A−1
ε λAα

εE
α
ε (A0 + λ)−1Mα

ε .

(39)

Portanto a igualdade (35) é válida e a desigualdade segue da limitação uniforme de
||(Aε + λ)−1||L(Xε), ||Eα

ε λ(A0 + λ)−1Mα
ε ||L(Xε) para λ em compactos, e da propriedade (29).

2 Considerações Finais
Neste trabalho vimos que, sob hipóteses adequadas a respeito de uma família de operadores,

podemos provar a convergência compacta de seus resolventes. Vimos também que a convergência
compacta dos resolventes nos permite verificar que o operador limite preserva propriedades do
restante da família. Por fim, este estudo pode ser utilizado para obter informações sobre soluções
de problemas elípticos em domínios perturbados, entre outras aplicações.
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