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Resumo. Neste trabalho estudamos propriedades de operadores com resolvente compacto. Com
base na teoria da convergéncia compacta, analisamos condigoes que garantem a limitagdo do ope-
rador resolvente, a convergéncia de certas familias de operadores e uma estimativa para a diferenca
entre operadores resolventes em diferentes contextos, sob hipdteses especificas.
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1 Introducao

Neste trabalho estudamos uma familia de espagos de Hilbert { X, }, para e € [0, &g]. Denotamos
por {Ac}ocqo,e,) uma familia geral de operadores tais que, para cada e € [0,g¢], A : D(A:) C
X. — X, é autoadjunto, positivo e tem resolvente compacto.

Esta familia de operadores pode surgir em diversos contextos. Em [1], a motivagdo para a analise
destes operadores é o estudo da convergéncia da familia de solugoes u® € H*(R?) do problema

Vu® - Vo + fuv = f(u®)v para todo v € H'(R?), ¢ > 0, (1)
Re Re
no dominio fino

R® = {(z,y) e R*™" : 2 € (0,1),y € ca(x)B;}, (2)

onde B; é a bola unitaria com centro na origem em R™. A funcdo a : [0,1] — R & de classe C?!,
a(0)=0ea(z) >0sex e (0,1]. A fungdo f : R — R ¢ de classe C? e satisfaz |f(u)| + | f/(u)| +
|f"(u)] < K para alguma constante K > 0 e para todo u € R.

As provas apresentadas sdo anilogas as demonstradas em [2] e [3]. Em [3], sdo provados resulta-
dos para uma familia de espagos de Hilbert {X.}, para € € [0, 0], e os operadores considerados sao
tais que A, é autoadjunto, positivo e possui resolvente compacto, para todo € € (0, gg]. Considera-
se que o operador Ag : D(Ag) C Xo — Xo estd definido em um espago Xy de dimenséao finita.
Neste trabalho detalhamos a demonstragao de alguns detalhes.

Denotamos por

U(AE) = {)‘iv ;7} (3)
o espectro do operador A, com 0 < A < A5 < <A < --e

Observagao 1.1. X, — 400 quando n — oo porque A, possui resolvente compacto.

Em decorréncia das propriedades de A., o espectro é formado apenas pelos autovalores do
operador, isto é, o espectro pontual de A, (ver [4], p. 248). Considere uma familia ortonormal

{¥5}32, de autofungoes do operador A. associada a {A5}32,. Para cada j € N, denotamos por
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Q5 a projecao ortogonal sobre o subespago gerado span[¢f, -« -, ¢5]. Com isto, de acordo com [5],
para todo « € [0,1], o operador A% : D(A%) C X, — X, é dado por

Ay = Z(Aj)“@ju para todo v € D(A.), (4)
j=1
D(AZ) = {u € Xo: Y (A)*IQ5ull%. < oo}. (5)
j=1

A cada operador A. associamos a familia de espagos de poténcias fracionarias { X2 },e[0,1) definida

2

por X2 = D(A%). O operador A% é positivo e autoadjunto, X é um espago de Hilbert com o
produto interno < u,v >xo=< Afu, AZv >x_ e norma definida por

lullxe = [[AZullx. = <Z(A§)QO‘IQ§uII§<E> : (6)

Jj=1

Observamos que, dependendo das propriedades do operador e do dominio, a escala de espacos de
poténcias fracionérias pode variar. Por exemplo, no caso estudado em [1], o espago X? corresponde

a H'(R®).

Assumimos que, para algum « € [0,1] fixado, existem duas familias de operadores lineares
EY:  X§— Xe MY : X¥ — X§, com ¢ € (0,e0], tais que

[ ] (Pl) M;’ OE? = IXSL,

o (P2) [|Eul[xe — [|u||xg quando € — 0,

o (P3) [|1E2||c(xg xa)s I1ME]|o(xe,xg) < C, onde C' > 0 é uma constante independente de e.

Desta forma E2 é injetor e M& é sobrejetor. Além disso
C M ullxg < ||Eullxa < Ollullxg (7)

para qualquer ¢ € (0, ).

1.1 Convergéncia Compacta

Utilizaremos os seguintes conceitos referentes a convergéncia de operadores.

Definigao 1.1. Uma sequéncia {u®}.c (), comu® € X, é dita E—convergente para uma fungao
u € X§ se |[u® — Edul[xe — 0 quando € — 0. Denotamos por u® L.

Definigao 1.2. Considere uma sequéncia {ep tnen tal que £, — 0 quando n — co. Uma sequéncia
{tn}nen, comu, € X2, é chamada E—relativamente compacta se para cada subsequéncia {u, }
existe outra subsequéncia {un~} e um elemento u € X§ tal que up» Ly w. Uma familia {u¢}, onde
u® € X¢, € dita E—relativamente compacta se cada subsequéncia {u,}, com u, € X&' ee, — 0,
é E—relativamente compacta.

Definigao 1.3. Dizemos que uma familia de operadores {B. : D(B.) C X. = X:}.¢[0,1] converge
para By : D(By) C Xo — Xo quando € — 0 se Bu® EEN Bou sempre que u® e X¢§. Denotamos
por B. EE, By.
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Definigao 1.4. Dizemos que uma familia de operadores compactos { B. : D(B:) C X. — X }eepo,1
converge compactamente para um operador By : D(By) C Xo — Xo se para cada familia {u®},

com |[uf||[xa < 1, a familia {B.u®} é E—relativamente compacta e B EE, By. Escrevemos

B. <% B,.
Lema 1.1. Fize a € [0,1] e assuma que AZ! ce, Aal. Valem as afirmagdes
. HA5_1||L(X;*) < C) para alguma constante C; > 0 independente de c.

e Dado um conjunto compacto K C p(—Ay), temos que K C p(—A;) para € suficientemente
pequeno e

sup sup ||(A + A) 7|z x xe) < Co (8)
EE(O,EU] AeK

para alguma constante Co independente de . Além disso,
A+ A4)7 5 (A + 49) 7 9)

Demonstragao. Se a primeira afirmacao nao é valida, podemos supor que existem sequéncias £ — 0
e {u*}ren com v € X tais que \|u5’~“||ng =1le HAe_kluE’“Hng — oo quando k — co. Desta
forma, temos que {A;klus’“} nao pode ser F—relativamente compacta, o que contradiz a hipotese
de que A1 EEN Ag*t. Portanto JAZ | z(xey < Ch.

Suponha agora que o segundo resultado nao é valido. Assim, existe sequéncia &, — 0 tal que
o(—A.,) N K # (. Portanto, podemos tomar A\, € o(—A., ) N K tal que A\, - A € K, e um
elemento u*» € X, com [|u*"||xa =1 tal que us" = =\, AZ'u". Como |[u*"||x= =1, a familia
{A;}us"} é E—relativamente compacta. Portanto, existe subsequéncia, que podemos denotar por
{en}, tal que A;}ugn EEAY para algum u® € X§'.

Se A =0, entao

[l [lxe, =[] = A Az u[[xg, < [AalCL— 0 (10)

En
quando n — oo, de onde obtemos um absurdo, pois |[u*"||xa = 1.
Suponha que A # 0. Como A, — A, vemos que —)\nAE_nlus"' E. _\uP. Com isto temos que

E o _ o )
utr = — ) ul e, pela convergéncia compacta, Asnlugn — Ay 1(—)\u0), de onde concluimos que

e, A Mum By XA (=), (11)

En

e assim

2 = A (= l) = —Agu® = M. (12)

Desta forma A € K No(—Ayp), o que é absurdo. Logo K C p(—A.) para todo € € [0,g¢], para
algum g¢ > 0.

Para provar a estimativa (8), note que, se A = 0, o resultado é vélido em decorréncia do primeiro
item.

Considere entao A # 0 e suponha que nao existe C' > 0 tal que

sup sup ||(A+ Ao) 7|z (x. xo) < C. (13)
e€(0,e0] NEK

Vamos provar que, para todo ¢ suficiente pequeno,

sup sup ||(I + AA;I)_1||£(X57X3) <C. (14)
e€(0,e0) AEK
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Observe que

A+ A) = A (I +2AZY), (15)
logo
AT+ AL = (T+2AY (16)
e assim
(IT4+MAHP =N+ A) AL (17)

Portanto existe (I + AAZ1)~! e assim Ker(I + AAZ!) = {0}. Pela alternativa de Fredholm para
operadores compactos, temos que Im(I + MAZ1) = X2. Assim, basta provar que existem C' > 0 e
go > 0 tais que, para todo € € [0, g],

1
(I + A" xe > o para todo u® € X&' com ||u®|[xe = 1. (18)
Se isto ndo ocorre, entdo para todo m € N existe u®™, com ||u5m||xgm =1, &g, — 0, tal que

1
[[(I+XAZHusm||xa < —. Pela convergéncia compacta, sabemos que existe subsequéncia tal que
m Sn =

E E
AZ'ufm =5 v e portanto AAZusm = \v. Note que

||usm + /\Eg”UH)(g < ||u€7n + )\A;iusm

xe +(=DOAZu = AEZ0)|xe (19)

Dado § > 0, podemos tomar m; de modo que a primeira parcela seja inferior a g para todo

m > my. Da E—convergéncia sabemos que existe mo tal que a segunda parcela também é inferior
a g para todo m > ms. Portanto
[[u™ + AESv||xa <6 (20)

para todo m > max{mj,ms}. Com isto concluimos que u™ Ly, M. Dai
Mgt (=) = o = —Agv = M, (21)

o que nao pode ocorrer uma vez que A € K C p(—Ap).
Portanto existe g¢ tal que, para todo ¢ € [0, &¢),

O+ A) " Hlexe xey S T+ ATl eexe xe) 1A 2xe) < C- (22)

Para provar que (A + A.)~! converge compactamente para (A + Ag)~!, tome uma sequéncia
{us} tal que |[u®||xa <1 e denote v° = (I + XAZ')"uf. Desta forma,
(A + A.)~tu® = AZ1v®. De fato, basta observar que
A+ ADAZH T XA ) = MY T+ A P T+ 2A7H ! (23)
=T+ M YT +2AH =1
Como uf e (I +AAZ1) ™! sdo limitados, temos que {v°} ¢ limitado. Podemos entdo assumir que
A+ A tu = AT 1f Ly 00 (24)
tomando subsequéncia se necessario. Isso ocorre porque A-! <e, Ay ! ¢ isso implica que a sequén-
cia {AZ1v°} é E—relativamente compacta.
Seja
2f = I+ AZH)TAZ e, (25)
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5
Observe que
(I +AAZ)TIATT = (A (I +2A70) 71 = (A + 1) 7 (26)
logo
25 = (T+ MY VAT = (0 + A tur S o0, (27)
Se ut 2 u®, sabemos que Az 1u® ER Agtu. Por outro lado,
AT = (T4 AAZY) 25 B 00 4 247100 = (T 4 AAg ). (28)

Desta forma Ag'u® = (I + My )w® = v° = (A + Ag)~'u’ e esta provada a convergéncia
compacta. O

Fixando o € [0,1], suponha que A! <, Ay ! e que existe funcio positiva e crescente 7 :
[0,e0] — [0,00) tal que 7(0) =0 e

A1 = B2AG M2 | £(x. xe) < 7(6)- (29)
Lema 1.2. Se X € p(—A.) € tal que X\ ¢ (—oo, =], entdo existe ¢ € (5,7) tal que
A€ T \Br(—A)) = {n € C:larg(u+ )| < o\ e C: [u+ A <r} (30)
para algum r > 0 pequeno. Além disso, se K C p(—A:) é um compacto, vale a estimativa
[[(A+ A7t — Ed(A+ AO)_1M3||L(XE)X?) < C7(g) para todo A € K, (31)
onde C' > 0 € uma constante independente de €.

Demonstracao. Provaremos que

AZ((Ae + 071 = B2 (Ao + \)TIME)

1 1 -1 1 (32)
SAL(Ae+ N TTAS(AZY - B2 A MOV — EEN(Ag + )T MD).
Primeiramente, reescrevemos a igualdade como
AZ((Ae + )71 = B2 (Ao + X)) 71 M2) (33)
=(1 = ANA: + X)) A2(AT! = B AT M) — EEN(Ag +\) 1 M2).
Note que
(I +AAZHT = NA-+ N7
=T = MAc + NP AT = MA+ )Y (34)
=A(Ac+ NP AT T - M A+
=A(Ac+ NP+ ANAc+N) T =1
Portanto a propriedade (32) vale se e somente se
(I +AATHAZ((Ae + 071 = EX(Ag +X) 71 ME) (35)

=AZ(AZ! = BEAGTME)(I = B2N(Ap + ) ' ME).
Por ([5], secdo 1.4), temos que A2A. = A.A? na interseccdo dos dominios dos operadores.

Desta forma
A;IA? = A?A;l. (36)
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Para o lado esquerdo da igualdade (35) utilizamos
T+ A= AZHA+ ) (37)
para escrever
(I +AATHAZ (A + N7 = B2 (Ao + X)) 7' ME)
=AM (Ac + NA[(Ac + )7 = B2 (Ao + )T M2
=AZ1AY — ATHAL + N AYEX(Ag + N) T MY
CAZTAZ — AZE2(Ag+ X)IME — AT AAZES (Ao + ) IME

(38)

Desenvolvendo o lado direito da igualdade (35) obtemos

AZ(AZT = BXAGTM)(I — EEN(Ao + )T ME)
=AYAZY — ACEXAGIME — ACATTECN(Ag + N)TEME + AYEC AN (Ag + \) M2
=AYAZY — ACEC AT ME — ACAZTEON(Ag + N) I M + ACECAGH(T — Ao(Ag +N) M
=AYAZY — ACAZTEON(Ag + N)TIME — ACE AN (T — T+ Ag(Ag + \) "M
=AYAZY — ACATTEON(Ag + N)TIMY — ACEX(Ag 4+ N) M2
=AT'AY — ACEX(Ag + N) T MY — AZPANACEY(Ag + N) M.

(39)

Portanto a igualdade (35) é valida e a desigualdade segue da limitagdo uniforme de
(A + X)) Hlzxs), IEEA(Ag + N) " M| £(x.) para A em compactos, e da propriedade (29). O

2 Consideracoes Finais

Neste trabalho vimos que, sob hipoteses adequadas a respeito de uma familia de operadores,
podemos provar a convergéncia compacta de seus resolventes. Vimos também que a convergéncia
compacta dos resolventes nos permite verificar que o operador limite preserva propriedades do
restante da familia. Por fim, este estudo pode ser utilizado para obter informagoes sobre solugoes
de problemas elipticos em dominios perturbados, entre outras aplicagoes.
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