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Resumo. Este trabalho apresenta uma analise local de um sistema dindmico que modela a com-
peticdo interespecifica entre duas populagoes sob a influéncia da colheita. O modelo é formulado a
partir de um sistema de equagdes diferenciais ordinarias do tipo Lotka-Volterra modificado, incor-
porando termos que representam a extracao de individuos. Investigamos a existéncia e estabilidade
dos pontos de equilibrio em func¢do dos parametros de crescimento, competigdo e intensidade da
colheita. Além disso, exploramos a controlabilidade local do sistema, analisando como variagbes
na colheita influenciam os regimes de coexisténcia, exclusdo competitiva ou extingdo mutua. Os
resultados obtidos reforcam a importancia da controlabilidade na dindmica populacional e suas
implicagoes para a regulagao das populagoes.
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1 Introducao

A competicao entre espécies por espaco e recursos limitados é um fendémeno central na ecologia
[5]. Para estudar as interagoes entre populagoes e prever seus comportamentos dindmicos, modelos
matematicos como os sistemas de Lotka-Volterra [4, 8] sdo amplamente empregados. Uma aplica-
¢ao relevante desses modelos aparece no contexto do cancer [7], onde células tumorais e normais
competem pelos mesmos recursos e espaco. Aqui introduzimos a colheita como um fator adicional
no modelo classico de competicdo interespecifica e analisamos seu impacto na estabilidade das
populagoes assim como a posibilidade de controlar o sistema proximo do equilibrio. O modelo
considerado é dado pelo sistema de equagoes diferenciais:

d[\/l N1 ai2 NQ
=L = an (1- - 1
dt “ 1( ks ks ) (1)
dNy Ny a1 Ny
=2 = BNy (1-2-— - 2
R R )

onde N; e N> representam as populagoes, « e 3 sao as taxas de crescimento intrinseco, k1 e ko as
capacidades de suporte, a1 e a1 0s coeficientes de competicao e u (termo de colheita) uma fungao
externa. A teoria de controle matemaético lida com o comportamento de sistemas dindmicos e a
manipulagao de varidveis para atingir objetivos especificos. No contexto da populagao de espécies,
essa abordagem pode variar, por exemplo, um objetivo pode ser diminuir uma populacao Ns.
Usando a notagdo x = (Ny, N2), podemos reescrever o sistema (1) como:

dx

] (3)
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Serao apresentadas defini¢oes essenciais para a classificagao de sistemas dindmicos com controle,
com base na referéncia [2|. Considera-se o sistema (3), onde D é um subconjunto aberto de R™ x R
ef:D—R"

dx

Definigao 1.1 (Solugdo de Equilibrio ou Equilibrio). Um equilibrio para o sistema G = f(z,u)
é um par (z*,h) € D tal que

f(z*,h) =0.
Quando fitamos h > 0, x* = x*(h) serd dito Estado de equilibrio para o sistema ‘Cil—f = f(x,h).2

Definigao 1.2 (Controlabilidade local). Sejam f : D — R™ de classe C' e (x*,h) um equilibrio
para % = f(z,u). Tal sistema é localmente controldvel em torno desse equilibrio se, para
todo mimero real € > 0, existe um ndmero real 1 > 0 tal que, para todo a € By(z*) = {x €
R™; |z —a*| < n} e para todo b € B, (x*), existe uma fung¢do mensurdvel e essencialmente limitada
Ugp : [0,€] = R tal que ||ugy — hl|loc <€ €

(il;tc = f(x,ua), z(0) = a) = z(e) =b.
O controle é uma perturbagao externa a dindmica. Aqui é de interesse que tal controle seja
minimamente invasivo, tornando necesséario trabalhar com varidveis de modulo pequeno, ou seja,
é preciso tratar da controlabilidade local com estados proximos a um estado de equilibrio. Em [6],
os autores aplicaram a nocao de controlabilidade local para um sistema de tipo Lotka-Volterra.
Posto isso, neste estudo a anélise sera feita de forma local e serd examinada a estabilidade e
controlabilidade em torno de um equilibrio do Sistema Dinamico que modela a competigao
interespecifica com colheita numa das espécies.

2 Anailise de Equilibrios e Estabilidade

Para encontrar os equilibrios, resolvemos dé\{l =0e dfl\;? = 0. Os pontos de equilibrios E(h) =

(N5 (h), N5 (h)), sendo h o parametro de colheita (u = h), sdo os seguintes:
¢ Extincao total: 1 = (0,0).
e Exclusao competitiva: E; = (k,0).
e Exclusdo competitiva: Ef e E; representam o caso em que Ni(h) =0,

k B\2 Ok k
Ef (h) 0,52+ <22) —gh : he[o,jﬂ.

_ . kg kg 2 kig . kQB
sy = (022 (Y -5) L e (02)

e Coexisténcia: Ef (h) e Ej (h), h > 0, representam equilibrios positivos.

BE0) = (F00.NF (), en< i< Lo ne (020l
By = (00N e < i< Lo ne (020 mmly) )

2 —a
onde NiF(h) = by — aioNF(h), NF(h) = B & \/(Be)" - grbah o Ry = kemtak,

l—ajiza21

?Este sistema modela, por exemplo, uma taxa de colheita constante u(t) = h.
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Lema 2.1. Sejam I = (0, MR%) e Ry = Bi=a2k2 - go 10 < Z—; < i entdo

4ko l1—aiza21
1. (N11(0), NS (0)) = (R, R2) € (0, k1) x (0, k2).
2. (N1E(h), No™(h)) € (0,k1) x (0,k2), ¥V h € 1.

Definigao 2.1 (Sistema Linearizado). Seja N* = (N7, Ny) um estado de equilibrio para (1). O
sistema linearizado em torno de N* € definido como

E R I v PR [T
= e A 6
No ﬁ<_a2]1€iv2) ﬂ(l— 2}1\22 _ ‘1211;\’1) Na
= 5F(NY)
Fazendo célculos, obtemos as matrizes J;(h) = g—f(El(h)) para cada estado de equilibrio E;(h).
a 0
3 — —a12x 8
SR _B(GQI%_l) ’ (8)
k3 (h)
—Q | Q12 2 1 0 k
Ji(h) = ( i}(m 2k (h) , he { Zﬂ] ; (9)
S (% )
ky (R)
_ —Q | Q12— — 1) 0 k‘gﬁ
J3(h) = ( L _ , hel0,—— ] ; (10)
—azlﬂikﬂf(zh) -8 (Li;h) — 1) 4
(RN -SERNT ) o
Ji(h) = 7 heIea12<k—1<a—; (11)
| EENT () —ENT () + | 2
— =Ny (h) —CENT(h) ] PR
J;(h) = , h€[ea12<k—1<a—. (12)
—ZRRNG () — NG () + o 2 o

Observagao 2.1. Na equacdo (11), é simples verificar que E}f (0) = (Ry, Ry) determina a seguinte
matriz
—mR e R
JF(0) = (13)
—az1 ,:%Rz —,%Rz

Definigao 2.2. Sejam U C R" aberto, f : U — R” de classe C' e N* um equilibrio de N = f(N)3.

dN

3Denotamos N = T
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(a) Dizemos que N* é um equilibrio estdvel se, dado € > 0, existe § = 6(¢) > 0 tal que para
qualquer condi¢ao inicial N(0) satisfazendo ||N(0) — N*|| < 6, tenha por consegiéncia uma
trajetoria N(t) que satisfaz:

[|IN(t) = N*|| <e, Vit>0. (14)
Um equilibrio N* serd dito instdvel se ele nao for estdvel.

(b) Dizemos que N* € um equilibrio assintoticamente estdvel se, além de ser estdvel, satisfaz a
condicdo sequinte:

Jim [[N(£) ~ N°|| = 0. (15)
(c) Dizemos que N* é um equilibrio instdvel se nao for estdvel.

A estabilidade local em torno de um equilibrio F pode ser classificado analisando-se a natureza
dos autovalores da matriz jacobiana J(F) associada. A continuagdo apresentamos resultados da
Teoria de estabilidade. [3]

Teorema 2.1. Sejam U C R" aberto, f: U — R" de classe Ct, N* um estado de equilibrio para
o sistema N = f(N) e g—]{,(N*) =J € R™™" a matriz jacobiana associada.

1. Se todos os autovalores de J tém parte real negativa, entdo N* € um equilibrio assintotica-
mente estdvel.

2. Se J tem algum autovalor com parte real positiva, entGo N* é um equilibrio instdvel.

O ponto de equilibrio agora é classificado analisando-se a natureza dos autovalores da matriz J
correspondente. para isso ¢ suficiente usar as matrizes definidas em (7)-(12):

Autovalores de J; = {a, 8}, (16)
Autovalores de Jo = {a, -8 <a21:1 — 1) } , (17)
2

+ +
Autovalores de J (h) = < —a (a2 Ry (h) _ 1),-8 2k; (h) _ 1) ¢, (18)

k1 ko
Autovalores de J5 (h) = {—a algw -1),-p ey (B) _ 1) ¢, (19)

k1 ko
Autovalores de Jf(0) = A€ C |\ — il + bR A+ ok SR, (1 —ajza01)=0;. (20)

k1 ko ki ke

Apartir de agora, denotamos J3 (0) e J; (0) por J3 e J4 respectivamente. Aplicando os resultados
de estabilidade local, Teorema 2.1, obtemos que:

1. (0,0) é uma fonte local = (0, 0) ¢é instavel.

2. Se ;- < B = (k1,0) & um atrator local => (k1,0) ¢ assint6ticamente estével.

3. Se ’,:—; < ajz = (0,k2) é um atrator local = (0, k2) ¢ assintéticamente estavel.

4. Se B > g5 = J3 tem um autovalor positivo = (0, ko) é instavel.

ka
5. Se a—il < Z—; < a2 = J4 tem um autovalor positivo = (R, R2) é instéavel.
Observacgao 2.2. Se a—il < k—; e ag < %, entao Ry - Ry < 0 (contradizendo as hipoteses bioldgi-

cas). Portanto, nessse caso consideramos trés equilibrios (0,0), (k1,0) e (0, k2)
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3 Controlabilidade Local

Seja ¢t € [0,e) (intervalo de controle). Em sistemas dinmicos, a colegdo de estados N(¢)
correspondentes para 0 < t < ¢ forma uma curva no espago, representada pela trajetéria que
descreve como o sistema se move ao longo desse tempo (conectando diferentes estados). Dessa
forma, esta trajetoria sofre influéncia das agoes do controle, u(-) € L*°(]0,¢),R), e a propriedade
de controlabilidade permite alcancar estados desejados para o sistema (no tempo ¢ = ¢).

E importante destacar que a controlabilidade para sistemas lineares trata-se de uma pro-
priedade global [1], no sentido de que conseguimos alcangar estados que ndo dependem de um
determinado conjunto (como Bs(N*)). De acordo com [2] a caraterizagdo da controlabilidade local
é um problema em aberto para sistemas de controle gerais. No entanto, hé ferramentas poderosas
que garantem condigoes suficientes, como sera visto no Teorema 3.1.

Teorema 3.1 (Condicao suficiente para Controlabilidade Local). * Seja (N*, u*) um equilibrio do
sistema de controle N = f(N,u). O sistema de controle em questao serd localmente controldvel

Of e s _OF Nk ok s .
8—N(N ,u*) e B= 8u(N ,u™) satisfazem:

det [B AB A’B --- A" 'B] #0. (21)

em torno do equilibrio (N*,u*) se as matrizes A =

A partir do modelo de Competigdo com colheita (1), descrito nas se¢oes anteriores, agora a pro-
blemética é controlar tal sistema. Matematicamente a intencao seréd atingir um valor especifico b,
que representa a quantidade de individuos das populagdes em um instante de tempo, N(g) = b,
por meio da insergao da perturbagao u : [0,e) — R na equagao:

N1 = OéNl — & — 7‘112]\[2

ok (22)
NQ = BNQ ]_ — % — 7‘12;;\[1 —u,

chamamos u© de um termo de colheita ou coleta, no sentido de que em modelos de dindmica de
populagoes, esse termo serd adicionado & equagao visando & modelagem da retirada de individuos
de uma populagao.

Seja B = [ f)l . Verificamos a condigao (21) do Teorema (3.1) nas matrizes definidas em (7)-(12),
para obter:
det[B J,B] = 0: (23)
det [B J3B] = ajpar > 0 (24)
det [B Jf(h)B] = 0, Yhe [0, kfﬂ ; (25)
k

det [B J5(h)B] = 0, Yhe (0, fﬂ ; (26)

1
det [B IF(h)B] = S2NH(h) > 0, Vhel e ap< oL (27)

k1 ky axn

1
det [B 37 (h)B] = T22N7(h) > 0, Vhel e <™ L (28)

k1 kay an

4Tal teorema trata-se de uma adaptacgdo dos teoremas 3.6 e 3.8 de [2].
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Portanto, o sistema (1) & localmente controlavel nos equilibrios: (k1,0), (R1.Rz) e (NE(h), NE(h)),
1

V h € I, quando os pardmetros biologicos satisfazem: a5 < % <o

4 Conclusoes

1. O Sistema (1) é localmente controlavel em torno de ((k1,0),0).

2. O Sistema (1) é localmente controlavel em torno de cada ponto (N*,u*) € £ C R? x R,
& = { (N{(h) ,NS(h), h) | N;" definidos em (4) parai=1,2 }. (29)

3. O Sistema (1) ¢ localmente controlavel em torno de cada ponto (N*,u*) € £; C R? x R,
& = { (N;(h) ,Ny(h), h) | N; definidos em (5) para i=1,2 }. (30)

4. Cousiderando o sistema (1)-(2) com « = 0 podemos estabelecer um conjunto de resultados
envolvendo as duas nogoes estabilidade / controlabilidade:

Tabela 1: Propriedades locais do Modelo (1)-(2) com u = 0.

a%l < Z—; < ais Equilibrio Estabilidade Controlabilidade
Extincao total (0,0) Fonte / Instavel —
Exclus@o competitiva (k1,0) Assintoticamente estavel localmente controlavel
Exclusao competitiva (0, k2) Assintéticamente estavel —
Coexisténcia (Ry1, R2) Sela/Instavel localmente controlavel

Demonstramos que a colheita pode alterar significativamente os resultados da competicdo entre
espécies. Por exemplo, na Figura 2, se observa que a solugao numérica quando u = 0 representa a
situagao de equilibrio de exclusao da espécie N7. Porém, ao considerar a colheita constante u = 0.1
a situagdo muda significativamente para o equilibrio de extin¢do da espécie Ny. A anélise sugere
estudos futuros de limites sustentaveis para a extragao de individuos, garantindo a persisténcia das
populagoes.

50

40

N2

30 1

204

o
=
5}
N
o
w
W
s
S
o
S
o
o

Figura 1: Orbitas do modelo (1)-(2) com u = 0 e equilibrios: (0,0), (60,0), (0,10) e (8,8). Os parametros
utilizados sdo @ = 2.2, § = 1.1, k1 = 60, k2 = 10, a12 = 6,5 e a21 = 0.25. Fonte: Elaborado pelo autor
(2025).
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Figura 2: Solugbes numéricas do modelo (1)-(2), no qual a situagdo de equilibrio é a exclusdo competitiva
da espécie N2 (linha tracejada) devido a uma colheita constante u = 0.1. Parametros utilizados séo os
mesmos da Figura 1. Fonte: Elaborado pelo autor (2025).
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