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Análise Local para um Modelo de Competição
Interespecífica com Colheita

Francis F. Córdova Puma1

UFSC, Blumenau, SC

Resumo. Este trabalho apresenta uma análise local de um sistema dinâmico que modela a com-
petição interespecífica entre duas populações sob a influência da colheita. O modelo é formulado a
partir de um sistema de equações diferenciais ordinárias do tipo Lotka-Volterra modificado, incor-
porando termos que representam a extração de indivíduos. Investigamos a existência e estabilidade
dos pontos de equilíbrio em função dos parâmetros de crescimento, competição e intensidade da
colheita. Além disso, exploramos a controlabilidade local do sistema, analisando como variações
na colheita influenciam os regimes de coexistência, exclusão competitiva ou extinção mútua. Os
resultados obtidos reforçam a importância da controlabilidade na dinâmica populacional e suas
implicações para a regulação das populações.
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1 Introdução
A competição entre espécies por espaço e recursos limitados é um fenômeno central na ecologia

[5]. Para estudar as interações entre populações e prever seus comportamentos dinâmicos, modelos
matemáticos como os sistemas de Lotka-Volterra [4, 8] são amplamente empregados. Uma aplica-
ção relevante desses modelos aparece no contexto do câncer [7], onde células tumorais e normais
competem pelos mesmos recursos e espaço. Aqui introduzimos a colheita como um fator adicional
no modelo clássico de competição interespecífica e analisamos seu impacto na estabilidade das
populações assim como a posibilidade de controlar o sistema próximo do equilíbrio. O modelo
considerado é dado pelo sistema de equações diferenciais:

dN1

dt
= αN1

(
1− N1

k1
− a12 N2

k1

)
(1)

dN2

dt
= βN2

(
1− N2

k2
− a21 N1

k2

)
− u(t), (2)

onde N1 e N2 representam as populações, α e β são as taxas de crescimento intrínseco, k1 e k2 as
capacidades de suporte, a12 e a21 os coeficientes de competição e u (termo de colheita) uma função
externa. A teoria de controle matemático lida com o comportamento de sistemas dinâmicos e a
manipulação de variáveis para atingir objetivos específicos. No contexto da população de espécies,
essa abordagem pode variar, por exemplo, um objetivo pode ser diminuir uma população N2.
Usando a notação x = (N1, N2), podemos reescrever o sistema (1) como:

dx

dt
= f(x, u). (3)
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Serão apresentadas definições essenciais para a classificação de sistemas dinâmicos com controle,
com base na referência [2]. Considera-se o sistema (3), onde D é um subconjunto aberto de Rn×R
e f : D → Rn.

Definição 1.1 (Solução de Equilíbrio ou Equilíbrio). Um equilíbrio para o sistema dx
dt = f(x, u)

é um par (x∗, h) ∈ D tal que
f(x∗, h) = 0.

Quando fixamos h > 0, x∗ = x∗(h) será dito Estado de equilíbrio para o sistema dx
dt = f(x, h).2

Definição 1.2 (Controlabilidade local). Sejam f : D → Rn de classe C1 e (x∗, h) um equilíbrio
para dx

dt = f(x, u). Tal sistema é localmente controlável em torno desse equilíbrio se, para
todo número real ε > 0, existe um número real η > 0 tal que, para todo a ∈ Bη(x

∗) := {x ∈
Rn; |x− x∗| < η} e para todo b ∈ Bη(x

∗), existe uma função mensurável e essencialmente limitada
uab : [0, ε] → R tal que ||uab − h||∞ ≤ ε e(

dx

dt
= f(x, uab), x(0) = a

)
=⇒ x(ε) = b.

O controle é uma perturbação externa à dinâmica. Aqui é de interesse que tal controle seja
minimamente invasivo, tornando necessário trabalhar com variáveis de modulo pequeno, ou seja,
é preciso tratar da controlabilidade local com estados próximos a um estado de equilíbrio. Em [6],
os autores aplicaram a noção de controlabilidade local para um sistema de tipo Lotka-Volterra.
Posto isso, neste estudo a análise será feita de forma local e será examinada a estabilidade e
controlabilidade em torno de um equilíbrio do Sistema Dinâmico que modela a competição
interespecífica com colheita numa das espécies.

2 Análise de Equilíbrios e Estabilidade
Para encontrar os equilíbrios, resolvemos dN1

dt = 0 e dN2

dt = 0. Os pontos de equilíbrios E(h) =
(N∗

1 (h), N
∗
2 (h)), sendo h o parâmetro de colheita (u = h), são os seguintes:

• Extinção total: E1 = (0, 0).

• Exclusão competitiva: E2 = (k1, 0).

• Exclusão competitiva: E+
3 e E−

3 representam o caso em que N∗
1 (h) = 0,

E+
3 (h) =

0 ,
k2
2

+

√(
k2
2

)2

− k2
β
h

 ; h ∈
[
0,

k2β

4

]
.

E−
3 (h) =

0 ,
k2
2

−

√(
k2
2

)2

− k2
β
h

 ; h ∈
(
0,

k2β

4

)
• Coexistência: E+

4 (h) e E−
4 (h), h > 0, representam equilíbrios positivos.

E+
4 (h) = (N+

1 (h), N+
2 (h)) , a12 <

k1
k2

<
1

a21
e h ∈

(
0,

β(1− a12a21)

4k2
R2

2

]
(4)

E−
4 (h) = (N−

1 (h), N−
2 (h)) , a12 <

k1
k2

<
1

a21
e h ∈

(
0,

β(1− a12a21)

4k2
R2

2

)
(5)

onde N±
1 (h) = k1 − a12N

±
2 (h), N±

2 (h) = R2

2 ±
√(

R2

2

)2 − k2h
β(1−a12a21)

e R2 = k2−a21k1

1−a12a21
.

2Este sistema modela, por exemplo, uma taxa de colheita constante u(t) = h.
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Lema 2.1. Sejam I =
(
0, β(1−a12a21)

4k2
R2

2

)
e R1 = k1−a12k2

1−a12a21
. Se a12 < k1

k2
< 1

a21
então

1.
(
N1

+(0), N+
2 (0)

)
= (R1, R2) ∈ (0, k1)× (0, k2).

2.
(
N1

±(h), N2
±(h)

)
∈ (0, k1)× (0, k2), ∀ h ∈ I.

Definição 2.1 (Sistema Linearizado). Seja N∗ = (N∗
1 , N

∗
2 ) um estado de equilíbrio para (1). O

sistema linearizado em torno de N∗ é definido como

[
Ṅ1

Ṅ2

]
=

 α
(
1− 2N∗

1

k1
− a12N

∗
2

k1

)
α
(
−a12N

∗
1

k1

)
β
(
−a21N

∗
2

k2

)
β
(
1− 2N∗

2

k2
− a21N

∗
1

k2

) 
︸ ︷︷ ︸

:= ∂f
∂N (N∗)

[
N1

N2

]
(6)

Fazendo cálculos, obtemos as matrizes Ji(h) =
∂f
∂N (Ei(h)) para cada estado de equilibrio Ei(h).

J1 =

[
α 0
0 β

]
; (7)

J2 =

[
−α −a12α

0 −β
(
a21

k1

k2
− 1

) ]
; (8)

J+
3 (h) =

 −α
(
a12

k+
2 (h)
k1

− 1
)

0

−a21β
k+
2 (h)
k2

−β
(

2k+
2 (h)
k2

− 1
)  , h ∈

[
0,

k2β

4

]
; (9)

J−
3 (h) =

 −α
(
a12

k−
2 (h)
k1

− 1
)

0

−a21β
k−
2 (h)
k2

−β
(

2k−
2 (h)
k2

− 1
)  , h ∈

(
0,

k2β

4

)
; (10)

J+
4 (h) =

 − α
k1
N+

1 (h) −αa12

k1
N+

1 (h)

−β a21

k2
N+

2 (h) − β
k2
N+

2 (h) + h
N+

2 (h)

 , h ∈ I e a12 <
k1
k2

<
1

a21
; (11)

J−
4 (h) =

 − α
k1
N−

1 (h) −αa12

k1
N−

1 (h)

−β a21

k2
N−

2 (h) − β
k2
N−

2 (h) + h
N−

2 (h)

 , h ∈ I e a12 <
k1
k2

<
1

a21
. (12)

Observação 2.1. Na equação (11), é simples verificar que E+
4 (0) = (R1, R2) determina a seguinte

matriz

J+
4 (0) =

 − α
k1
R1 −a12

α
k1
R1

−a21
β
k2
R2 − β

k2
R2

 (13)

Definição 2.2. Sejam U ⊂ Rn aberto, f : U → Rn de classe C1 e N∗ um equilíbrio de Ṅ = f(N)3.

3Denotamos Ṅ = dN
dt
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(a) Dizemos que N∗ é um equilíbrio estável se, dado ϵ > 0, existe δ = δ(ϵ) > 0 tal que para
qualquer condição inicial N(0) satisfazendo ||N(0)−N∗|| < δ, tenha por conseqüência uma
trajetória N(t) que satisfaz:

||N(t)−N∗|| < ϵ , ∀ t ≥ 0. (14)

Um equilíbrio N∗ será dito instável se ele não for estável.

(b) Dizemos que N∗ é um equilíbrio assíntoticamente estável se, além de ser estável, satisfaz à
condição seguinte:

lim
t→∞

||N(t)−N∗|| = 0. (15)

(c) Dizemos que N∗ é um equilíbrio instável se não for estável.

A estabilidade local em torno de um equilíbrio E pode ser classificado analisando-se a natureza
dos autovalores da matriz jacobiana J(E) associada. A continuação apresentamos resultados da
Teoria de estabilidade. [3]

Teorema 2.1. Sejam U ⊂ Rn aberto, f : U → Rn de classe C1, N∗ um estado de equilíbrio para
o sistema Ṅ = f(N) e ∂f

∂N (N∗) = J ∈ Rn×n a matriz jacobiana associada.

1. Se todos os autovalores de J têm parte real negativa, então N∗ é um equilíbrio assintotica-
mente estável.

2. Se J tem algum autovalor com parte real positiva, então N∗ é um equilíbrio instável.

O ponto de equilíbrio agora é classificado analisando-se a natureza dos autovalores da matriz J
correspondente. para isso é suficiente usar as matrizes definidas em (7)-(12):

Autovalores de J1 = {α, β}, (16)

Autovalores de J2 =

{
−α,−β

(
a21

k1
k2

− 1

)}
, (17)

Autovalores de J+
3 (h) =

{
−α

(
a12

k+2 (h)

k1
− 1

)
,−β

(
2k+2 (h)

k2
− 1

)}
, (18)

Autovalores de J−
3 (h) =

{
−α

(
a12

k−2 (h)

k1
− 1

)
,−β

(
2k−2 (h)

k2
− 1

)}
, (19)

Autovalores de J+
4 (0) =

{
λ ∈ C | λ2 −

(
αR1

k1
+

βR2

k2

)
λ+

αR1

k1

βR2

k2
(1− a12a21) = 0

}
. (20)

Apartir de agora, denotamos J+
3 (0) e J+

4 (0) por J3 e J4 respectivamente. Aplicando os resultados
de estabilidade local, Teorema 2.1, obtemos que:

1. (0, 0) é uma fonte local =⇒ (0, 0) é instável.

2. Se 1
a21

< k1

k2
=⇒ (k1, 0) é um atrator local =⇒ (k1, 0) é assintóticamente estável.

3. Se k1

k2
< a12 =⇒ (0, k2) é um atrator local =⇒ (0, k2) é assintóticamente estável.

4. Se k1

k2
> a12 =⇒ J3 tem um autovalor positivo =⇒ (0, k2) é instável.

5. Se 1
a21

< k1

k2
< a12 =⇒ J4 tem um autovalor positivo =⇒ (R1, R2) é instável.

Observação 2.2. Se 1
a21

< k1

k2
e a12 < k1

k2
, então R2 ·R1 < 0 (contradizendo as hipôteses biológi-

cas). Portanto, nessse caso consideramos três equilíbrios (0, 0), (k1, 0) e (0, k2)
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3 Controlabilidade Local
Seja t ∈ [0, ε) (intervalo de controle). Em sistemas dinâmicos, a coleção de estados N(t)

correspondentes para 0 ≤ t < ε forma uma curva no espaço, representada pela trajetória que
descreve como o sistema se move ao longo desse tempo (conectando diferentes estados). Dessa
forma, esta trajetória sofre influência das ações do controle, u(·) ∈ L∞([0, ε),R), e a propriedade
de controlabilidade permite alcançar estados desejados para o sistema (no tempo t = ε).

É importante destacar que a controlabilidade para sistemas lineares trata-se de uma pro-
priedade global [1], no sentido de que conseguimos alcançar estados que não dependem de um
determinado conjunto (como Bδ(N

∗)). De acordo com [2] a caraterização da controlabilidade local
é um problema em aberto para sistemas de controle gerais. No entanto, há ferramentas poderosas
que garantem condições suficientes, como será visto no Teorema 3.1.

Teorema 3.1 (Condição suficiente para Controlabilidade Local). 4 Seja (N∗, u∗) um equilíbrio do
sistema de controle Ṅ = f(N, u). O sistema de controle em questão será localmente controlável

em torno do equilíbrio (N∗, u∗) se as matrizes A =
∂f

∂N
(N∗, u∗) e B =

∂f

∂u
(N∗, u∗) satisfazem:

det
[
B AB A2B · · · An−1B

]
̸= 0. (21)

A partir do modelo de Competição com colheita (1), descrito nas seções anteriores, agora a pro-
blemática é controlar tal sistema. Matematicamente a intenção será atingir um valor específico b,
que representa a quantidade de indivíduos das populações em um instante de tempo, N(ε) = b,
por meio da inserção da perturbação u : [0, ε) → R na equação:Ṅ1 = αN1

(
1− N1

k1
− a12N2

k1

)
Ṅ2 = βN2

(
1− N2

k2
− a21N1

k2

)
− u,

(22)

chamamos u de um termo de colheita ou coleta, no sentido de que em modelos de dinâmica de
populações, esse termo será adicionado à equação visando à modelagem da retirada de indivíduos
de uma população.

Seja B =

[
0
−1

]
. Verificamos a condição (21) do Teorema (3.1) nas matrizes definidas em (7)-(12),

para obter:

det [B J1B] = 0 ; (23)

det [B J2B] = a12α > 0 ; (24)

det
[
B J+

3 (h)B
]

= 0 , ∀ h ∈
[
0,

k2β

4

]
; (25)

det
[
B J−

3 (h)B
]

= 0 , ∀ h ∈
(
0,

k2β

4

]
; (26)

det
[
B J+

4 (h)B
]

=
αa12
k1

N+
1 (h) > 0 , ∀ h ∈ I e a12 <

k1
k2

<
1

a21
; (27)

det
[
B J−

4 (h)B
]

=
αa12
k1

N−
1 (h) > 0 , ∀ h ∈ I e a12 <

k1
k2

<
1

a21
. (28)

4Tal teorema trata-se de uma adaptação dos teoremas 3.6 e 3.8 de [2].
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Portanto, o sistema (1) é localmente controlável nos equilíbrios: (k1, 0), (R1.R2) e (N±
1 (h), N±

2 (h)),
∀ h ∈ I, quando os parâmetros biológicos satisfazem: a12 < k1

k2
< 1

a21
.

4 Conclusões
1. O Sistema (1) é localmente controlável em torno de ((k1, 0), 0).

2. O Sistema (1) é localmente controlável em torno de cada ponto (N∗, u∗) ∈ E+
4 ⊂ R2 × R,

E+
4 =

{ (
N+

1 (h) , N+
2 (h) , h

) ∣∣ N+
i definidos em (4) para i = 1, 2

}
. (29)

3. O Sistema (1) é localmente controlável em torno de cada ponto (N∗, u∗) ∈ E−
4 ⊂ R2 × R,

E−
4 =

{ (
N−

1 (h) , N−
2 (h) , h

) ∣∣ N−
i definidos em (5) para i = 1, 2

}
. (30)

4. Considerando o sistema (1)-(2) com u ≡ 0 podemos estabelecer um conjunto de resultados
envolvendo as duas noções estabilidade / controlabilidade:

Tabela 1: Propriedades locais do Modelo (1)-(2) com u ≡ 0.
1

a21
< k1

k2
< a12 Equilibrio Estabilidade Controlabilidade

Extinção total (0, 0) Fonte / Instável ——
Exclusão competitiva (k1, 0) Assintóticamente estável localmente controlável
Exclusão competitiva (0, k2) Assintóticamente estável ——

Coexistência (R1, R2) Sela/Instável localmente controlável

Demonstramos que a colheita pode alterar significativamente os resultados da competição entre
espécies. Por exemplo, na Figura 2, se observa que a solução numérica quando u ≡ 0 representa a
situação de equilíbrio de exclusão da espécie N1. Porém, ao considerar a colheita constante u = 0.1
a situação muda significativamente para o equilibrio de extinção da espécie N2. A análise sugere
estudos futuros de limites sustentáveis para a extração de indivíduos, garantindo a persistência das
populações.

Figura 1: Órbitas do modelo (1)-(2) com u ≡ 0 e equilíbrios: (0, 0), (60, 0), (0, 10) e (8, 8). Os parâmetros
utilizados são α = 2.2, β = 1.1, k1 = 60, k2 = 10, a12 = 6, 5 e a21 = 0.25. Fonte: Elaborado pelo autor
(2025).
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Figura 2: Soluções numéricas do modelo (1)-(2), no qual a situação de equilíbrio é a exclusão competitiva
da espécie N2 (linha tracejada) devido a uma colheita constante u = 0.1. Parâmetros utilizados são os
mesmos da Figura 1. Fonte: Elaborado pelo autor (2025).
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