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Differential equations serve as a powerful tool for modeling physical phenomena in which a key
quantity varies concerning one or more other factors. For instance, in renewable energy systems
like wind turbines, differential equations are used to model fluid dynamics to predict wind flow
patterns and optimize turbine designs for maximum energy extraction [1]. Similarly, in solar
energy, differential equations are used to model heat transfer processes within thermal energy
storage systems, such as phase change materials or sensible heat storage systems. These equations
describe the transient behavior of temperature distribution within the storage medium as heat
is absorbed or released during charging and discharging cycles. [3]. These problems are tackled
by solving momentum or heat transport equations, respectively. These equations, prominent in
computational fluid dynamics, provide a foundational framework for analyzing such problems [2].

Numerical methods are mostly used to solve any differential equation. These methods replace
existing derivatives with algebraic expressions involving the unknown function and deliver a solu-
tion for a discrete number of points with a certain error. The greater this number of points, it is
expected that the numerical solution will be closer to the exact solution [4]. This work proposes
to analyze time-discretization schemes to solve a heat diffusion model. The latter is represented
by a two-dimensional unsteady-state heat diffusion equation, given by
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where ρ, k, and Cp are the density, thermal conductivity, and isobaric specific heat of the fluid,
respectively.

The differential equation is solved using the finite volume method (FVM). This method is
selected because of the physical interpretation of the equations. The fully discretized form for the
equation (1), considered for this work, is given by
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where firstly, the temporal term of (1) is discretized using a first-order (backward) differencing
scheme. To discretize the temporal terms on the right side of Equation (1), we introduce a weighting
parameter, denoted as θ, with values ranging between 0 and 1. The schemes considered were the
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explicit method (θ = 0), the Crank-Nicholson method (θ = 0.5), and the fully implicit method
(θ = 1). The explicit and fully implicit have a first-order error convergence. The Crank-Nicholson
method has a second-order error convergence. The central difference method is employed for
spatial discretization to estimate the temperature distribution at any cell P . This method has a
second-order error convergence [5].

To verify the code implementation, the following manufactured solution was used:

f(x, y, t) =
4

π2
e−2π2αt sin (πx) sin (πy). (3)

The numerical verification was done considering the boundary values of the solution in (3), and
they were input into the code implementation. Afterward, the numerical solution was compared
with the exact solution at the final instant. For this, the maximum error was evaluated in all cells
as the number of cells increased. The overall numerical method converged as first-order accurate,
as expected.

A classic heat diffusion problem was solved with an initial temperature and prescribed tem-
perature at the boundaries to assess the aforementioned temporal schemes. The conclusion was
that the explicit and Crank-Nicholson methods have a maximum size for the time step. Therefore,
obtaining any temperature distribution behavior over time can take a significant amount of time.
On the other hand, the fully implicit method does not have the time step size limitation, but it is
first-order accurate. This work is an initial step in investigating higher-order schemes to discretize
the temporal term of equation (1) since it will allow for a more accurate solution for more complex
problems.
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