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Health, environmental, demographic, and other public data sets are typically aggregated (to
administrative or geopolitical regions) to facilitate analysis and protect privacy. The use of standard
regression models for spatially referenced data can result in spatial dependence in the residuals.
For decades, the solution for this problem was to use spatial regression models [4]. The usual setup
for a spatial regression defines a set of areal-units I = {1, 2, . . . , n} with respective observations
yi, i ∈ I modelled as:

Yi = β0 +XiβX +ZiβZ + εi. (1)

Here Xi and Zi represent measure and unmeasured covariates for location i ∈ I respectively.
Also, εi represents an error term for the observation at location i, having mean 0 and variance σ2.
Assuming that unobserved variables exhibit spatial patterns, the typical modeling approach invol-
ves incorporating a spatially structured latent variable, often represented as a correlated Gaussian
Markov random field (GMRF), to address the absence of these variables in the analysis [6]. If
measured variables do not suffice for confounding adjustment, but the missing confounders exhibit
a spatial structure, we face a spatial confounding situation. The same terminology is also used in
the context of spatial statistics to address correlation between the latent spatial factor and fixed
effects [6]. If the unmeasured confounders are spatially varying in that nearby observations have
similar values, recent developments utilize this structure to mitigate bias from these unmeasured
spatial confounders [5], [2], [3]. In this work, we review, in the lines of [7], current methods in
causal inference literature to deal with confounding.

For this purpose, consider assigning treatments Ai ∈ {0, 1} for each region i ∈ I. We simulate
treatments having a spatial distribution putting Xi ∼ Bernoulli[expit(Vi + ϕUi)]. Here U and
V represent spatial terms drawn from models U ∼ CAR(ρU , 2) and U ∼ CAR(ρV , 2). Then we
set Yi|Xi ∼ Normal(Xiβ + Ui, 1). Note that ρ controls spatial dependence and ϕ the strength
of confounding. For the parameter values we choose ρU , ρV ∈ {0.9, 0.99} to simulate a scenario
with moderate and strong spatial correlation. To address misspecification we change Vi + ϕUi to
Vi+ϕU2

i . We generate the data sets on the map of São Paulo municipalities with β = ϕ = 0.6. For
each data sets we fit the models: non-spatial OLS (NS); non-spatial OLS + propensity score splines
(NS + P); Spatial CAR (S); Spatial CAR + propensity score spline (S + P). Bayesian methods
are used to best deal with the latent variables and inherently account for uncertainty. All of these
methods are fit in R-Nimble. All of the variance components received InvGamma(0.5, 0.005) priors.
Means had Normal(0, 10) prior. Latent spatial factors received ICAR [1] priors.

The results show that the spatial model (S) provides little improvement over the null model
(NS). The best performers were propensity score splines (NS + P) and (S + P). The propensity
score spline, differently than [7] was found to be not robust to misspecification. All parameter
estimates are biased on the scenarios with low spatial association. In this case, the unmeasured
confounder cannot be explained by known covariates or spatial patterns.
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Figura 1: Simulation study results. The boxplots summarize the sampling distribution of the causal
estimates across data sets and the solid line at 0.6 is the true value. Both scenarios displayed are
with high spatial association (ρ = 0.99). The scenario on the right is misspecified. Source: created
by the authors

In conclusion, our simulations demonstrate promising results in mitigating unmeasured spatial
confounding, paving the way for further exploration and application in real-world scenarios. This
methodology holds potential for extension to longitudinal and time series data analysis, offering ap-
proaches to investigate confounders across temporal dimensions. Robust non-parametric methods
for the propensity scores are also of interest to mitigate misspecification. Moreover, future research
should delve into addressing the issue of interference to enhance the robustness and applicability
of these approaches.
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