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It is often the case in Statistics that one needs to compute sums of infinite series, especially in
marginalising over discrete latent variables. This has become more relevant with the popularization
of gradient-based techniques (e.g. Hamiltonian Monte Carlo) in the Bayesian inference context,
for which discrete latent variables are hard or impossible to deal with. For many major infinite
series, custom algorithms have been developed which exploit specific features of each problem.
In contrast, here we employ basic results from the theory of infinite series to investigate general,
problem-agnostic algorithms to approximate (truncate) infinite sums within an arbitrary tolerance
ε > 0 and provide robust computational implementations with provable guarantees.

A major idea that will be explored in this paper is that of finding error-bounding pairs, and
in what follows it will be convenient to establish Proposition 0.1, which is inspired by the results
in [2].

Proposition 0.1 (Bounding a convergent infinite series). Let S :=
∑∞

k=0 ak and Sn :=∑n
k=0 ak. Under the assumptions that (an)n≥0 is positive, decreasing and passes the ratio test,

then for every 0 ≤ n < ∞ the following holds:
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Here we show an application of the proposed techniques to the Conway-Maxwell Poisson dis-
tribution (COMP, [3]), which is a popular model for count data, mainly due to its ability to
accommodate under- as well as over-dispersed data. For µ > 0 and ν > 0, the COMP probability
mass function (p.m.f.) can be written as

p̃µ,ν(n) =
µνn

Z̃(µ, ν)(n!)ν
,
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where

Z̃(µ, ν) :=

∞∑
n=0

(
µn

n!

)ν

(3)

is the normalising constant. The sum in (3) is not usually known in closed-form for most values of
(µ, ν) and thus needs to be computed approximately.

Consider the situation where one has observed some independent and identically distributed
(i.i.d.) data y assumed to come from a COMP distribution with parameters µ and ν and one
would like to obtain a posterior distribution p(µ, ν | y) ∝ f(y | µ, ν)π(µ, ν). This Bayesian infer-
ence problem constitutes a so-called doubly-intractable problem, because neither the normalising
constant of the posterior p(µ, ν | y) nor that of the likelihood f(y | µ, ν) are known. Our approach
fits within the so-called noisy algorithms, where the likelihood is replaced by a (noisy) estimate
at every step of the MCMC [4]. An added benefit is that an approximation of the likelihood with
controlled error will yield an algorithm where in principle one can make the approximation error
negligible compared to Monte Carlo error.

In their Figure 5, [1] show that for some values of µ and ν the approximation will take many
more than 1000 iterations. In Table 1, we leverage the techniques developed here to provide the
exact numbers of iterations needed to achieve a certain tolerance ε using approaches 1 and 2, for
the same parameter values considered by [1]. We show that many more iterations than one would
normally set are needed in certain contexts, once more highlighting the value of having adaptive
algorithms that bypass having to set K.

Table 1: Numbers of iterations needed to approximate the normalising constant of the
COMP. We show the number n of iterations needed to obtain |Z̃(µ, ν) −

∑n
x=0 p̃µ,ν(x)| ≤ ε for

ε = δ and ε = 106δ, where δ is machine precision (given in R by .Machine$double.eps). Results
for the Sum-to-threshold and Error-bounding pair approaches are provided.

ε = 2.2× 10−10 ε = 2.2× 10−16

Parameters Threshold Error-bounding Threshold Error-bounding
µ = 10, ν = 0.1 136 138 186 188
µ = 100, ν = 0.01 1371 1481 1868 1963
µ = 100, ν = 0.001 13725 15661 18692 20410

µ = 10000, ν = 0.0001 137265 164853 186931 211670

References
[1] A. Benson and N. Friel. “Bayesian Inference, Model Selection and Likelihood Estimation using

Fast Rejection Sampling: The Conway-Maxwell-Poisson Distribution”. In: Bayesian Analysis
(2021).

[2] B. Braden. “Calculating sums of infinite series”. In: The American mathematical monthly
99.7 (1992), pp. 649–655.

[3] R.W. Conway and W. L. Maxwell. “A queuing model with state dependent service rates”. In:
Journal of Industrial Engineering 12.2 (1962), pp. 132–136.

[4] P. Alquierand N. Friel, R. Everitt, and A. Boland. “Noisy Monte Carlo: Convergence of Markov
chains with approximate transition kernels”. In: Statistics and Computing 26.1-2 (2016),
pp. 29–47.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 11, n. 1, 2025.

010017-2 © 2025 SBMAC


