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The difficulty of dealing with 3D Navier-Stokes equations (NSE) is due to the fact that global
regularity results for this model are still unknown, being one of the most challenging problems
in partial differential equations theory, since the control of vorticity stretching term in the 3D
vorticity equation is the main obstacle. As an analytical and computational alternative, some
subgrid-scale models of turbulence, called in literature as α-models, were developed and have been
extensively studied as a regularization of NSE, which make use of a special smoothing kernel, the
one associated with the Green function of the Helmholtz operator v = u − α2∆u, where α is a
given length-scale parameter. The first member of the family was introduced in the late 1990s (see
[3]) called the Navier-Stokes-α (NS-α), as a closure model for the Reynolds averaged equations
of the NSE. Posteriorly, similar models such as Leray-α [4] and the Modified Bardina model (see
[5]) were introduced and have been object of interest specially in simulation in computational fluid
dynamics. Computationally, explicit solutions for these models give excellent agreement with ex-
perimental data for a wide range of huge Reynolds numbers.

In this work, we are interested in studying α−models in the context that the lengthscale
parameter α > 0 is not exactly known, analyzing the dynamic of the system when the parameter α is
replaced by a “guess" β and estimating the error of the real state solution u when such a replacement
on parameters is done. For that, suppose we have the physical system du

dt = Fλ(u), with the
initialization point u0 and the parameter λ both missing. We want to construct an algorithm for
approximate u(t) from the available observational measurements Ih(u(t)). We consider then the
auxiliary assimilated system

dw

dt
= Fλ̃(w)− ηIh(w) + ηIh(u)

with w(0) = w0, where w0 is taken to be arbitrary, λ̃ is an a priori guessing to λ. For the sake of
understanding, we choose Bardina model

vt − ν∆v + (u · ∇)u = −∇p+ f, in Ω = [0, L]3, (1)
v = u− α2∆u with ∇ · v = ∇ · u = 0.

where u = (u1(x, t), u2(x, t), u3(x, t)) is the spatial (filtered) velocity field, p = p(x, t) is a modified
scalar pressure field, f = f(x, t) is a given external force and ν > 0 is kinematic viscosity. Now,
consider the continuous data assimilation technique employed firstly in [1], an algorithm that
uses some types of measurement data of the system, for which a general type of approximation
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interpolation operator exists. More precisely, consider the following system

zt − ν∆z + (w · ∇)w = −∇p+ f − η(Ihw − Ihu), in Ω = [0, L]3, (2)
z = w − β2∆w with ∇ · v = ∇ · u = 0,

where η > 0 is a relaxation parameter and Ih is an interpolant linear operator that can be con-
structed from observational measurements of the system (1), with h > 0 the coarse spatial resolu-
tion related to the accuracy of the operator, satisfying for all ϕ ∈ H2(Ω),

∥Ihϕ− ϕ∥2L2(Ω) ≤ c1h
2∥∇ϕ∥2L2(Ω) + c2h

4∥∆ϕ∥2L2(Ω). (3)

This work is inspired in [2], where the authors studied the same continuous data assimilation
algorithm in the context of an unknown viscosity for 2D NSE. In our work, we obtained the
following summary result, related to the convergence of the approximate solution to the real state
solution:

Theorem 1. Let f ∈ L∞(R+, L
2) and u and w solutions of (1) and (2), respectively, with Ih

satisfying (3). Choosing η > 0 large enough and h > 0 small enough, we have for all t ≥ 0,

∥w(t)− u(t)∥2L2(Ω) + β2∥∇w(t)−∇u(t)∥2L2(Ω)

≤ e−
λ1ν
2 t(∥w(0)− u(0)∥2L2(Ω) + β2∥∇w(0)−∇u(0)∥2L2(Ω))

+
|β2 − α2|2

β2
· C(α, ν, ∥f∥L2(Ω), λ1,M)

where λ1 is the first eigenvalue of Laplacian operator and M is an upper bound for the L2-norm
of the real state solution u and its gradient ∇u.
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