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Causal inference from observational data presents unique challenges, primarily due to the po-
tential for confounding variables that can affect both outcomes and covariates of interest. When
unobservable confounders exist, approaches that rely on instrumental variables (IVs) — quantities
that are correlated with the variable of interest (relevance condition) and are independent of the
unobservable confounders — offer a way to still identify causal effects. In this work, we present a
novel framework for nonparametric IV (NPIV) estimation that relies on stochastic approximate
gradients and demonstrate finite sample bounds for the projected populational risk of our estima-
tor. The challenge is that NPIV estimation, although more capable of adapting to the intrinsic
structure of the data when compared to its parametric counterpart, is an ill-posed inverse problem
[2].

Let X be a random vector of covariates taking values in X ⊆ RdX . We assume that the
response variable Y is generated according to

Y = h⋆(X) + ε, (1)

where ε satisfies E[ε] = 0. We assume that E[ε | X] ̸= 0, that is, some covariates are endogenous
and ε is a confounding variable. Finally, we assume the existence of a random vector Z, taking
values in Z ⊆ RdZ and satisfying E[ε | Z] = 0 as well as X ⊥̸⊥ Z. This makes Z a valid instrumental
variable. We further consider the mild assumption that X and Z have a joint density denoted by
pX,Z . Our goal is to estimate h⋆ based on i.i.d. samples from the joint distribution of X,Z and Y .

It is well known [2] that eq. (1) is equivalent to a Fredholm integral equation of the first kind
[1], given by

r = P[h⋆], (2)

where r(Z) = E[Y |Z] and P : L2(X) → L2(Z) is the4 conditional expectation operator: P[h](z) =
E[h(X)|Z = z]. Motivated by eq. (2), we introduce a pointwise loss function ℓ : R×R → R and
define the associated populational risk measure R : L2(X) → R as

R(h) = E[ℓ(r(Z),P[h](Z))]. (3)

The example the reader should keep in mind is the squared loss function ℓ(y, y′) = 1
2 (y−y′)2. Our

goal is to solve the NPIV regression problem by solving infh∈H R(h), where H is a closed, convex,
bounded subset of L2(X) which contains both h⋆ and the origin.
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4We denote by L2(X) the Hilbert space of (equivalence classes of) functions f : X → R such that E[f(X)2] < ∞.

The space L2(Z) is defined accordingly.
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As our strategy is based on minimizing the risk measure R, we would like to compute an
analytical formula for ∇R(h), where h ∈ L2(X), which is done in the following proposition:

Proposition 0.1. The risk R is Fréchet differentiable and it’s gradient satisfies

∇R(h) = P∗[∂2ℓ(r(·),P[h](·))] = E[Φ(·, Z)∂2ℓ(r(Z),P[h](Z))], (4)

where P∗ : L2(Z) → L2(X) is the adjoint of the operator P and Φ(x, z) =
pX,Z(x,z)
pX(x)pZ(z) .

From eq. (4), for a given x ∈ X we have that the random variable Φ(x, Z)∂2ℓ(r(Z),P[h](Z)) is
an unbiased stochastic estimate of ∇R(h)(x). This stochastic gradient has two main terms: Φ(x, Z)
and ∂2ℓ(r(Z),P[h](Z)), which we will estimate separately. Hence, our stochastic approximate
gradient is built using estimators Φ̂, r̂ and P̂ of Φ, r and P respectively, which we assume were
obtained through some statistical procedure on a separate dataset of X,Y, Z samples. With this
notation, given a sample Z, we consider

∇̂R(h)(x) = Φ̂(x, Z)∂2ℓ(r̂(Z), P̂[h](Z)). (5)

In algorithm 1 we present Stochastic Approximate Gradient Descent IV (SAGD–IV)

Algorithm 1 SAGD–IV

Input: Samples
{
(zm)Mm=1

}
. Estimators Φ̂, r̂ and P̂. Sequence of learning rates (αm)Mm=1.

Initial guess ĥ0 ∈ H.
Output: ĥ
for 1 ≤ m ≤ M do

Set um = Φ̂(·, zm)∂2ℓ
(
r̂(zm), P̂[ĥm−1](zm)

)
Set ĥm = projH

[
ĥm−1 − αmum

]
end for
Set ĥ = 1

M

∑M
m=1 ĥm

Since we are directly optimizing the projected populational risk measure, we are able to provide
guarantees for R(ĥ) in mean with respect to the training data z1:M = {z1, . . . ,zm}. Our main
result is the following:

Theorem 0.1. Let ĥ0, . . . , ĥM−1 be generated according to algorithm 1. Then, if we let ĥ =
1
M

∑M
m=1 ĥm−1, under mild assumptions on Φ̂, r̂ and P̂, the following bound holds:

Ez1:M

[
R(ĥ)−R(h⋆)

]
≤ D2

2MαM
+

ξ

M

M∑
m=1

αm + τ
√
ζ, (6)

where ξ and τ are constant given the estimators Φ̂, r̂, P̂, and

ζ = ∥Φ− Φ̂∥2L2(PX⊗PZ) + ∥r − r̂∥2L2(Z) + ∥P − P̂∥2op.
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