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Dengue fever is an arboviral disease transmitted from human to human by the Aedes aegypti
mosquito, which has rapidly become one of the most concerning tropical diseases, affecting millions
of people every year. The realistic modeling of Dengue transmission and epidemiology presents
several challenges [6]: First, being a vector-borne disease, it is important to model the mosquito
population in addition to the host (human) population. Second, there are four serotypes of the
virus, complicating the epidemiological dynamics [3]. Finally, so-called antibody-dependent en-
hancment (ADE) can occur [4], in which the presence of multivalent antibodies from a previous
infection can, in certain situations, enhance a new infection. Therefore, it has become apparent
that modeling the within-host antibody dynamics can be an important aspect of dengue modeling.

Motivated by these observations and the related works [1, 2, 5], we introduce a new dengue
transmission model, taking the form of a system of structured (transport) equations and ODEs.
The model acts on the following dynamical variables: F (t, s, y) is the infected (human) host pop-
ulation with virus level higher than some detectable threshold s0, distributed by virus load s > s0
and antibody (Ab) titer y > 0. S(t, y) is the recovered host population distributed by Ab titer
y > y0, where y0 is an Ab detection threshold. E(t) is the quantity of hosts in the incubation
period, and P (t) is the quantity of susceptible hosts. Ev and Iv represent the vector (mosquito)
dynamics, with incubation and infected compartments. The system takes the following form:

∂tF (t, s, y) + ∂s (a1F (t, s, y)s− a2F (t, s, y)y)

+ ∂y (−a3F (t, s, y)y + a4F (t, s, y)s) = 0,

∂tS(t, y) + ∂y (−a3S(t, y)y) = −F (t, s0, y)
(
a1s0 − a2y

)
−,

Ė(t) = bIv(t)P (t)− a1s0
τh

E(t),

Ṗ (t) = −bIv(t)P (t) + a3y0S(t, y0),

Ėv(t) =

(∫ ∞

0

∫ ∞

s0

F (t, z, y)γ(z)dzdy

)
(1− Ev(t)− Iv(t))−

1

τv
Ev(t),

İv(t) =
1

τv
Ev(t)− µvIv(t),

(1)

The system must be supplemented with some boundary conditions which we omit here for the sake
of brevity. The constants appearing in (1) are explained in Table 1.

The transport terms in the first equation of (1) represent the within-host virus reproduction,
the Ab effect on the virus, the Ab decay rate, and the Ab production in the presence of virus.
The transport term on the second equation represents the natural Ab decay in individuals with

1paulo.amorim@fgv.br
2soledad.aronna@fgv.br
3debora.medeiros@fgv.br

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 11, n. 1, 2025.

Trabalho apresentado no XLIII CNMAC, Centro de Convenções do Armação Resort - Porto de Galinhas - PE, 2024

010089-1 © 2025 SBMAC



2

Table 1: Variables and parameters in the system (1).
Notation Definition Value
s0 Minimum detectable viral load s0 > 0
y0 Minimum detectable Ab titer y0 > 0
a1 Virus growth rate in host ≥ 0
a2 viral load decay rate in presence of antibody ≥ 0
a3 Ab titer decay rate ≥ 0
a4 Ab titer production rate in presence of virus ≥ 0
b Vector to host transmission rate ≥ 0
µh Natural host death rate ≥ 0
µv Natural vector death rate ≥ 0
γ(·) Efficiency of host to vector transmission ≥ 0
τv virus incubation period in the vector τv ∈ [8, 12]
τh virus incubation period in the host τh ≈ 7

little or no viral load. The right-hand side of the second equation represents the flow from the
infected population F as infected individuals reach the threshold viral load s0 by recuperation.
the remaining equations follow standard SIS/SIR type dynamics, except that the exposure rate of
vectors is a (nonlocal) function of the total infected population.

Partial results for this system include numerical simulations, which we will report, and a nu-
merical estimate of the reproduction number R0. Mathematical questions related to this model
include the existence of an endemic equilibrium (which is not immediate due to the PDE nature
and the couplings), and the stability of the disease-free equilibrium.

Thus, the goal of this work is to determine if the above system can serve as a reasonable
modeling framework for dengue dynamics, with the aim of later introducing more specific terms
related to ADE, multiple virus strains, and vaccines.
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