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In many applications, one is interested in reconstructing a function f when only few (potentially
very noisy) evaluations f(x) are available, usually due to budget restrictions. When information
about the “shape” of f is available, e.g., whether it is monotonic, convex/concave, etc., it is desirable
to include this information into the curve-fitting procedure. Here we build on the Gaussian process
literature to propose a comprehensive framework for flexibly modeling f and its first two derivatives
given evaluations of f , f ′, f ′′ at potentially irregular grids. We show how to include shape-
constraints in a principled way through the prior and apply the developed methods to function
emulation for noisy Markov chain Monte Carlo.

A typical strategy for evaluating a computationally intensive function f across a large collection
of points S is to construct a more cost-effective estimator f̂(q) ≊ f(q) ∀ q ∈ Q ⊆ S, and then use
f̂(q) for approximation over q ∈ (D(f)\Q), where D(f) is the domain of f , covering the remaining
points in the domain. Employing Gaussian processes (see Definition 1) facilitates direct uncertainty
quantification and enables the computation of probabilities such as P[f̂(a) ∈ A] for each a ∈ D(f̂)

and every A ⊆ Im(f̂), where Im(f̂) denotes the image of f̂ . Furthermore, we can incorporate
shape constraints on f like monotonicity and convexity by manipulating the prior measure over
its derivatives. This is done by exploiting Property 1, an idea initially explored in [2–4]. For our
purposes, we can define a Gaussian process as follows:

Definition 1 (Gaussian Process). A Gaussian Process is a collection of random variables, such
that any finite number of which have a joint Gaussian distribution. For a function f : X → R,
modelled as f(X) | X ∼ GP(m(X), k(X,X ′)), where m(X) and k(X,X ′) represent the mean and
kernel (or covariance) functions applied to each entry X ∈ X, respectively. The kernel function
should be symmetric and hold k(X,X) > 0 for every (same) X.

Considering the model Y | (f ,X) ∼ N (f , σ2I) with f | X ∼ GP(m(X), k(X,X ′)), where
σ2 > 0 is a known constant, Y ,X ∈ Rn are random vectors, and I denotes the identity matrix
in Rn×n, we can take a Bayesian approach and compute a posterior distribution f | X,Y for a
sample size of n. In this case, we are able to sample from any unobserved Y ⋆ for a new observed x⋆

by the predictive posterior p(Y ⋆ | y,x⋆,x), which is also Normally distributed [2]. The main result
that will make us able to present the shape-constrained Gaussian processes (SCGPs) approach was
also introduced by [2], which is:

Property 1 (Derivative of a GP is a GP). Let (f(X) | X) = (f | X) ∼ GP(m(X), k(X,X ′)),
then for every ∂f

∂Xd
we will have that:
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the equivalent follows for the expected values. Therefore:[
f
f ′

]
| X ∼ GP
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,
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∂
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])
. (2)

Considering the predictive posterior and equation (2), we are able to perform a shape-constrained
Gaussian process regression using observations of ((x1, y), (x2, y

′)) which do not need to be on the
same input values.

Here we showcase a function emulation application involving the approximation of a marginal
likelihood. Consider a tempered posterior of the form pα(θ | z) ∝ l(z | θ)απ(θ) for α ∈ [0, 1]. Our
goal is to emulate fz(α) =

∫
Ω
l(z | t)απ(t) dµ(t) with 20 evaluations, which are quite costly. In

our experiments, we were able to achieve some intuition about the information that the derivative
processes bring to the regression, although it might propagate uncertainty, as can be seen in Figure
1.

Figure 1: On the left: Gaussian process regression. Right: shape-constrained Gaussian process with first
derivative observation. Both using the Radial Basis Function (RBF) as the kernel function. Source: the
authors.
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