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SRGNN: Simple Recurrent Graph Neural Network
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Graph Neural Networks (GNNs) are capable of learning graph representations via message
passing, which consists of performing aggregation and combination operations on the vertices
of a graph. The aggregation operation computes a message based on the representation of the
neighborhood of a vertex, and the combination operation updates its representation based on the
message and the current representation of the vertex. The expressive power of standard GNNs
is tied to the color refinement algorithm for detecting isomorphism [2]. Noticeably, this property
only requires that we have injective aggregation and combination operations.

Typically, GNN variants like GCN [3] and GIN [4] are implemented as a multi-layer neural
network, where each layer can learn different weights. However, it is not so common to define
these networks as recurrent GNNs, where all the layers have the same weights. This work has
the goal of evaluating the learning capabilities of this simpler variant of GNNs, that will be called
Simple Recurrent GNNs (SRGNNs).

The standard variant of GNNs are the Message Passing Neural Networks (MPNNs) [1], being
the base for the definition of SRGNNs. This type of network is defined as follows:

Definition 1. Let G = (V,E) be a graph and ξ be a L-layer MPNN. For all layers ζ(l) of ξ,
1 ≤ l ≤ L, the network updates the representation h

(l)
v for all vertices v ∈ V by performing

m(l)
v = aggθ(l)({{h(l−1)

u | u ∈ N (v)}}), (1)

h(l)
v = combϕ(l)(h(l−1)

v ,m(l)
v ), (2)

where {{·}} denotes a multiset, N (v) denotes the neighborhood of v in G and h
(0)
v represents the

initial state of the vertex v. Also, aggθ(l) and combϕ(l) are functions indexed by the weights θ(l) and
ϕ(l), respectively, where aggθ(l) must be a function that operates on multisets and, as a consequence,
be permutation invariant [5].

MPNNs are known to have the same expressiveness as the color refinement algorithm to dis-
tinguish graphs. This fact is described by the theorem 1:

Theorem 1 ([2]). Let G = (V (G), E(G)) and H = (V (H), E(H)) be graphs and ξ be a L-layer
MPNN. Then, for all vertices vG ∈ V (G) and vH ∈ V (H),

cr(L)(G, vG) = cr(L)(H, vH) =⇒ ξ(G, vG) = ξ(H, vH),

where cr(L) denotes the color refinement algorithm with L interactions and ξ(G, vG) denotes the
representation of the node vG calculated by the last layer of ξ on G, i.e., h(L)

vG .

The SRGNN, as mentioned before, is defined as a special case of a MPNN, and inherits its
expressive power:
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Definition 2. Let G = (V,E) be a graph and ξ be a L-layer MPNN. ξ is called a SRGNN if all
the layers ζ(l), 1 ≤ l ≤ L, have the same weights, i.e., if θ(l) = θ and ϕ(l) = ϕ, 1 ≤ l ≤ L. This
layer will simply be called ζ.

The model implementation for the SRGNN is very concise. First, each vertex v ∈ G passes
through a MLP, ϕinput : RD 7→ RH . After this, the layer ζ of the SRGNN is recurrently applied
to the output of the last layer L times. Finally, all the representations computed by the last layer
are pooled, and the result is passed through another MLP, ϕoutput : RH 7→ R|C|, where |C| is the
number of classes, calculating the probabilities for each class.

At certain datasets, this model obtained similar performance when compared to the GIN-0
model from Xu, Hu, Leskovec, and Jegelka [4]’s paper. The results from the experiments and the
equivalent results for the GIN-0 are presented in table 1.

Table 1: experiment accuracy (%) mean and standard deviation results.
Model MUTAG PROTEINS PTC NCI1
GIN-0 89.4 ± 5.6 76.2 ± 2.8 64.6 ± 7.0 82.7 ± 1.7

SRGNN 90.0 ± 2.9 73.7 ± 1.3 62.9 ± 3.0 67.5 ± 2.9
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