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Abstract. In the present paper we discuss bilevel optimization. We consider a recent ϵ-approx-
imation to the pessimistic bilevel optimization and we show that it may actually converge to the
solution of the optimistic bilevel optimization problem. We also propose an ϵ-approximate smoothed
problem which may model more realistic situations.
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1 Introduction

Bilevel optimization [1] problems model decentralized games where the actions of a leader
trigger the actions of a follower, both the follower and the leader try to minimize their costs (or
maximize gains), and each of them has his/her definition of what kind of cost to minimize. The
leader’s actions constrain the follower’s actions and influence how the follower computes his costs.
The follower’s decisions, in turn, affect how the leader calculates her costs but do not constrain
the possibilities of the leader.

One can write the optimistic formulation of a bilevel problem as follows:

min
x,y

f(x,y)

s. t. : x ∈ X

y ∈ F(x),

(1)

where F(x) is the (follower’s) rational response set, defined as follows:

F(x) := arg min
y∈Y (x)

g(x,y). (2)

It will be helpful later to define the rational response cost as

g(x) := min
y∈Y (x)

g(x,y). (3)

That is, one can rewrite the rational response set as

F(x) = {y ∈ Y (x) : g(x,y) = g(x)}. (4)

We call the above formulation optimistic because the leader can select the follower’s rational
response that gives the best possible result for his purposes. Another interpretation is that one
assumes that the follower has information about the leader’s objective and is willing to collaborate
in minimizing the leader’s objective function, as long as this collaboration does not cause extra
losses to the follower.
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Figure 1: Illustration of a simple toll-setting problem. There is one destination, one origin, and
two paths. The untolled way has cost c1. The tolled path has cost c2 plus the toll fee x. Source:
produced by the author.

Assuming that the follower will select the most favorable rational response to the leader might
not model reality well enough. It might be the case that the follower is willing to antagonize the
leader. A proposed alternative is the pessimistic formulation of the bilevel optimization problem.
To introduce the pessimistic bilevel [3] problem, let us define the maximal response cost:

f(x) := max
y∈F(x)

f(x,y). (5)

Then, we define the pessimistic response set as:

P(x) :=
{
y ∈ F(x) : f(x,y) = f(x)

}
. (6)

Finally, the pessimistic bilevel problem is given by

min
x,y

f(x,y)

s. t. : x ∈ X

y ∈ P(x).

(7)

Let us, for example, consider a simple toll-setting problem of the form

min
x,y1,y2

− xy2

s. t. : x ≥ 0

y ∈ arg min
y1+y2=1
y1, y2≥0

c1y1 + (c2 + x)y2.
(8)

This problem is an instance of (1) with

f(x,y) = −xy2, g(x,y) = c1y1 + (c2 + x)y2, X = R+,

and Y (x) = {y ∈ R2
+ : y1 + y2 = 1}. (9)

In the above problem, illustrated in Figure 1, x is the toll fee (which is to be determined by the
leader) of the tolled path, and the fixed values c1 and c2 are the costs of traveling the untolled and
tolled routes. Values y1 and y2 are the proportion of drivers that take the tolled and untolled ways.
This optimistic formulation has the solution (x, y1, y2) = (c1 − c2, 0, 1) (we assume that c1 > c2;
otherwise, no driver would take the tolled route unless the toll is negative).
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The pessimistic formulation of the same model, on the other hand, lacks a solution, because if
x < c1 − c2, then F(x) = {(0, 1)} and the objective function value is −x. Therefore, increasing
the toll fee x seems to improve the leader’s profit. However, this is true only up to the point where
x = c1− c2 > 0, in which case P(x) = {(1, 0)} and we have a discontinuous increase of the leader’s
cost from −x to 0. It is an example of the well-known fact that the pessimistic bilevel problem
may fail to be solvable even when its optimistic counterpart does have a solution [3].

Notice that the optimistic formulation concludes that all drivers take the tolled path when the
costs for traveling both routes are the same. In contrast, the pessimistic formulation assumes that
all drivers take the untolled way when the expenses for traveling both paths are equal. From the
follower’s viewpoint, however, when x = c1− c2, every feasible solution has an equivalent cost, and
in practice, there is no reason why all drivers would choose the tolled route when all routes cost
the same.

2 Limited Rationality
Let us start by defining the follower’s ϵ-Rational Response Set Fϵ(x):

Fϵ(x) := {y ∈ Y (x) : g(x,y) ≤ g(x) + ϵ}. (10)

Wiesemann et al. [3] gives the following approximation to the pessimistic bilevel problem

min
x

Wf,ϵ(x)

s. t. : x ∈ X,
(11)

where
Wf,ϵ(x) := sup

y∈Fϵ(x)

f(x,y). (12)

According to Wiesemann et al. [3], these problems have, under mild hypothesis, solution for every
ϵ > 0. Moreover, the solution converges for ϵ → 0. We call this a “limited rationality” approach
because less than optimal solutions are accepted for the follower.

Let us consider this formulation applied to the toll-setting problem above.

Fϵ(x) = Y (x) ∩
{
{y : c1y1 + (c2 + x)y2 ≤ (c2 + x) + ϵ} if c2 + x ≤ c1

{y : c1y1 + (c2 + x)y2 ≤ c1 + ϵ} otherwise
(13)

Parametrizing Y (x) as y1 = α and y2 = 1− α, for α ∈ [0, 1]:

F̃ϵ(x) =

{
{α ∈ [0, 1] : c1α+ (c2 + x)(1− α) ≤ (c2 + x) + ϵ} if c2 + x ≤ c1

{α ∈ [0, 1] : c1α+ (c2 + x)(1− α) ≤ c1 + ϵ} otherwise
(14)

Rearranjing:

F̃ϵ(x) =


0 ≤ α ≤ min

{
1, ϵ

c1−(c2+x)

}
if c2 + x < c1

0 ≤ α ≤ 1 if c2 + x = c1

max
{
0, c1−(c2+x)+ϵ

c1−(c2+x)

}
≤ α ≤ 1 otherwise.

(15)

This can be simplified if we denote ∆ = c1 − (c2 + x):

F̃ϵ(∆) =


0 ≤ α ≤ min

{
1, ϵ

∆

}
if ∆ > 0

0 ≤ α ≤ 1 if ∆ = 0

max
{
0, ∆+ϵ

∆

}
≤ α ≤ 1 otherwise.

(16)
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We now compute the objective function Wf,ϵ with respect to the variable ∆:

Wf,ϵ(∆) = sup
α∈F̃ϵ(∆)

(1− α)(∆− c1 + c2).

Notice that ∆− c1 + c2 = −x ≤ 0. Therefore, the supremum will be attained at α = max F̃ϵ(∆).
That is,

Wf,ϵ(∆) =

{(
1− ϵ

∆

)
(∆− c1 + c2) if ∆ > ϵ

0 otherwise.

The minimizer of Wf,ϵ(∆) is given by ∆∗
ϵ =

√
(c1 − c2)ϵ. That is, the optimal toll for the ϵ-

approximation of the original toll-setting problem is given by

x∗
ϵ = (c1 − c2)−

√
(c1 − c2)ϵ.

Therefore, if one follows the approach of Wiesemann et al., the limiting solution of the ϵ-approximation
turns out to be the same solution of the optimistic problem.

3 An Intermediate Formulation
A limitation of the optimistic, pessimistic and ϵ-approximate bilevel problems is that they model

circumstances where the follower acts as single entity. The paper [2] introduces the intermediate
formulation below, which overcomes this limitation:

min
x

Ef (x) :=

∫
F(x)

f(x,y)dµx(y), (17)

where µx is an probability measure, which depends on x. This intermediate formulation eliminates
the assumption that the follower considers the leader’s goals and gives arbitrary weights to all of
the follower’s rational responses. Problems (1) and (7) are determined by f(x,y), g(x,y), X, and
Y (x), whereas (17) also requires the definition of µx.

To analyze the intermediate problem for the toll-setting model, we can write the rational
response set for this case explicitly:

F(x) =


(0, 1) if x < c1 − c2

(α, 1− α) : α ∈ [0, 1] if x = c1 − c2

(1, 0) if x > c1 − c2.

(18)

Because µx is a probability measure, the objective function of (17) has the form

Ef (x) =


−x if x < c1 − c2

−q(c1 − c2) if x = c1 − c2

0 if x > c1 − c2,

(19)

where q ∈ [0, 1] is determined by the choice of the probability measure µx made by the modeller.
This is so because since µx is a probability measure, we have∫

F(x)

f(x,y)dµx(y) ∈
[

inf
y∈F(x)

f(x,y), sup
y∈F(x)

f(x,y)

]
= [−x, 0] (20)

and the integral equals −x = −(c1 − c2) if and only if µx is the Dirac measure of the point y =
(0, 1). A straightforward generalization of this argument justifies the terminology intermediate
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applied to (17) because its objective function can assume any value between the pessimistic and
the optimistic cases, depending on how the measure µx is selected.

Notice that if q ∈ [0, 1) the problem has no solution, since the objective function can become
arbitrarily close to −(c1 − c2), but can never reach this value. If q = 1, then the solution is
x = c1 − c2.

The analysis above shows that the intermediate formulation of [2] does not solve the issue of
the non-existence of solutions in this simple toll-setting problem unless it matches the optimistic
formulation (both the optimistic (1) and the pessimistic (7) formulations are special cases of the
intermediate (17) case). This is because there is an abrupt change in the rational response set
when x = c1 − c2. This discontinuous behavior causes mathematical difficulties, and it also does
not model reality. In fact, the cost for travelling a route is not the same for all drivers for a variety
of reasons and the costs proposed in the model are average costs. Because of that, in reality the
probability that a given driver will take a path is likely to depend smoothly on the average cost.

4 A Generalized Approach
Our proposed approach is to use a formulation where the collective nature of the follower (the

herd) is taken into account together with the limited rationality in a single formulation. The new
formulation of the problem would then be

min
x

Af,ϵ(x) :=

∫
Fϵ(x)

f(x,y)dµx,ϵ(y), (21)

In the toll-setting problem above, using the uniform measure over Fϵ(x), we would have he
objective function Af,ϵ:

Af,ϵ(x) =


− 1

min{1, ϵ
∆}

∫min{1, ϵ
∆}

0 x(1− α)dα if ∆ > 0

−
∫ 1

0
x(1− α)dα if ∆ = 0

− 1

1−max{0,∆+ϵ
∆ }

∫ 1

max{0,∆+ϵ
∆ } x(1− α)dα otherwise

(22)

Equivalently:

Af,ϵ(x) =


− 1

ϵ
∆

∫ ϵ
∆

0
x(1− α)dα if ∆ > ϵ

−
∫ 1

0
x(1− α)dα if ϵ ≥ ∆ ≥ −ϵ

− 1
1−∆+ϵ

∆

∫ 1
∆+ϵ
∆

x(1− α)dα if − ϵ > ∆.

(23)

In other words:

Af,ϵ(x) =


−x

(
1− ϵ

2∆

)
if ∆ > ϵ

−x 1
2 if ϵ ≥ ∆ ≥ −ϵ

x ϵ
2∆ if − ϵ > ∆.

(24)

Although it is easy to minimize Af,ϵ analytically, an illustration can be more clarifying. In
Figure 2 we can see a comparison between our approach and Wiesemann’s approach. Notice that
both converge to the solution of the optimistic model as ϵ → 0. More interestingly, Wiesemann’s
approach never allows for a toll fee larger than c1 − c2 even given a large ϵ. This is so because his
approach is still pessimistic, since although it takes limited rationality into consideration, it still
assumes that there is a uniform antagonic behavior of all of the followers. Mallozzi’s approach, on
the other hand, takes into account nonuniform behavior, but assumes full rationality. Our aproach,
however, takes both limited rationality and nonuniform behavior into account. This leads to the
possibility of obtaining better solutions when there is a large “rationality gap” by setting the toll
fee to values larger than c1 − c2.
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Figure 2: Comparison between the functions Af,ϵ (using the uniform measure) and Wf,ϵ for the
toll-setting problem with c1 = 2 and c2 = 1. Dotted lines depict the graphic of Wf,ϵ, solid lines
depict the graphic of Af,ϵ. Each color represents a different value for ϵ.. Source: produced by the
author.

5 Concluding Remarks
We have presented a new generalization of the bilevel optimization problem and we have shown

that it offers more generality than those currently available at the literature. This generality can be
relevant, as shown in the simplest possible toll fee setting example. Future work includes studying
the theoretical properties of the new approach as well as its application to more sophisticated
problems.
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