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Abstract. We develop an efficient and accurate method to compute the quadrature of an oscillatory
integral arising in the discretization of the fractional Laplacian operator. The complete mathemat-
ical development is presented. The implementation, performed in modern C++, is provided as
open-source software and proves to produce results with accuracy up to a few ulps.
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1 Introduction

This work aims to construct an accurate numerical method to compute the following oscillatory
integrals Ik(α, h) depending on the parameters α, h ∈ R and k ∈ Z:

Ik(α, h) =
1

πhα

∫ π

0

cos (kθ) θα dθ =
Ci (α+ 1, kπ)

πhαkα+1
, subject to α ∈ [0, 2] and h > 0 . (1)

The special function Ci (a, x) is the Generalized Cosine Integral [5, (8.21.7)], which has the
representation

Ci (a, x) =

∫ x

0

cos (t) ta−1 dt , for a > 0 . (2)

(In what follows, we will write Ik instead of Ik(α, h). Also, k will be considered belonging to
the naturals N = {0, 1, 2, . . .} since the integrals in equation (1) are invariant under change of
sign in k.) Such integrals arise in spectral numerical methods to approximate the one-dimensional
fractional Laplacian operator of band limited functions [7, p. 10]; this hypersingular operator being
the focus of our current research. To be more precise to the reader, the power θα in equation (1)
is the Fourier multiplier of the referred operator, F((−∇2)α/2f)(ω) = |ω|αf̂(ω), where (−∇2)α/2

represents the fractional Laplacian.
For k = 0, the expression in equation (1) reduces to I0 = πα/

(
hα(α+1)

)
. In the general case,

one can represent the integrals in terms of the generalized hypergeometric function 1F2 as

hα(α+ 1)Ik

πα
= 1F2

(
α+ 1

2
;
1

2
,
3 + α

2
; −k2π2

4

)
, (3)
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which is defined as a power series on k whose radius of convergence is infinite. However, power
series are not suitable for calculating numerically the values of Ik when k goes to infinity: as the
argument −k2π2/4 decreases, the series of 1F2 converges more slowly5.

Remark 1.1. Aside from the Generalized Cosine Integral in equation (2), we also need to use the
standard Sine and Cosine Integrals Si (x) [2, (5.2.1)] and Ci (x) [2, (5.2.27)] defined as

Si (x) =

∫ x

0

sin (t)

t
dt and Ci (x) = −

∫ ∞

x

cos (t)

t
dt , (4)

and the relation (which can be verified using the identities given in [2, p. 231])

−k

∫ π

0

sin (kθ) ln (θ) dθ =

∫ kπ

0

1− cos (θ)

θ
dθ = γ + ln (kπ)− Ci (kπ) , for k > 0 even , (5)

where γ is the Euler-Mascheroni constant.

2 Asymptotic expressions for large k

To accurately compute the values of Ik for large k, we start by looking for an asymptotic
expression for it. We begin with the following lemma, which can be easily proved integrating by
parts

∫ π

0
cos (kθ) θα dθ = −αk−1−α

∫ kπ

0
sin (θ) θα−1 dθ:

Lemma 2.1. Suppose α > −1 and k > 0. Therefore,

Ci (α+ 1, kπ) = kα+1

∫ π

0

cos (kθ) θα dθ = −αIk(α) , (6)

where we define the function Ik by

Ik(α) :=

∫ kπ

0

sin (θ) θα−1 dθ , for α > −1 and k a positive integer . (7)

Remark 2.1. We remark that the integral in equation (7) is well-defined despite the singularity

near the origin because
∣∣∣∫ kπ

0
sin (θ) θα−1 dθ

∣∣∣ ≤ θα+1

α+ 1

∣∣∣∣kπ
0

=
(kπ)α+1

α+ 1
< ∞, since | sin(θ)| ≤ θ for

θ ≥ 0.

It is worth:

Lemma 2.2. Let β < 0 and define

Jk(β) := (−1)k(kπ)−β

∫ ∞

0

sin (θ) θβ dθ . (8)

5In fact, the implementation available in the current release of Boost Math Library [8] for the hy-
pergeometric function fails with the exception “Cancellation is so severe that no bits in the result are
correct...” in calculating the value of 1F2 in equation (3) for k large (depending on α) using double-precision
arithmetic. To show this failure we present the example source code available at https://github.com/gffrnl/
generalized-cosine-integrals-kpi/blob/main/misc/boost_1F2_failure.cpp. The details for compilation and
usage are available in the source code. Unfortunately, the current release of Boost Math Library (1.84.0) does
not furnish a specialized method to compute 1F2, so we had to use the general purpose method to compute the
generalized hypergeometric function pFq . We refer to https://www.boost.org/doc/libs/1_84_0/libs/math/doc/
html/math_toolkit/hypergeometric.html for further details.
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(The convergence of this improper integral is guaranteed by the Dirichlet test, noting that the
function θβ is monotonically decreasing and converges to zero as θ → ∞, while

∣∣∣∫ t

kπ
sin (θ) dθ

∣∣∣ ≤ 2

for all t ≥ kπ.) Thus, Jk satisfies the recurrence relation

Jk(β) = 1− β(β − 1)

(kπ)2
Jk(β − 2) . (9)

(The recurrence identity in equation (9) is obtained integrating by parts twice.)

Remark 2.2. The recurrence relation (9) allows us to extend the definition of Jk(β) to β ≥ 0,
even if the integral in equation (8) is not well-defined for β > 0. In addition to its computational
practicality, this observation will be used to prove the following proposition.

Proposition 2.1. Suppose α ∈ (0, 2) and k > 0. Thus, we have

Ik(α) = Γ(α) sin
(πα

2

)
− (−1)k(kπ)α−1Jk(α− 1) (10)

and, consequently,

Ci (α+ 1, kπ) = −αΓ(α) sin
(πα

2

)
+ (−1)k(kπ)α−1αJk(α− 1) . (11)

Proof. We first look the case 0 < α < 1, i.e., in which the following identity holds [4, (5.9.7)]:∫ ∞

0

sin (y) θα−1dy = Γ(α) sin
(πα

2

)
, for α ∈ (0, 1) .

By the last identity, we are allowed to write Ik(α) = Γ(α) sin
(
πα
2

)
−
∫∞
kπ

sin (θ) θα−1 dθ and, using
the definition of Jk in Lemma 2.2, the equation (10) holds.

The case α ∈ (1, 2) is treated similarly. We apply integration by parts to the definition of Ik(α)
to obtain

Ik(α) = (−1)k+1(kπ)α−1 + (α− 1)

∫ kπ

0

cos (θ) θα−2 dθ

= Γ(α) sin
(πα

2

)
+ (−1)k+1(kπ)α−1 − (α− 1)

∫ ∞

kπ

cos (θ) θα−2 dθ ,

(12)

where we used the fact that for α ∈ (1, 2) the following identity holds [4, (5.9.6)]:∫ ∞

0

cos (θ) θα−2 dθ = Γ(α− 1) cos (π(α− 1)/2) =
Γ(α)

α− 1
sin

(πα
2

)
.

We can now use the recurrence relation given in equation (9) in the extended domain of definition
for β > 0 (see Remark 2.2) to obtain

Jk(α− 1) = 1− (α− 1)(α− 2)

(kπ)2
Jk(α− 3) ,

which can be used to write the integral involving the cosine function in equation (12) in terms of
Jk(α− 1) as∫ ∞

kπ

cos (θ) θα−2 dθ = −(α− 2)

∫ ∞

kπ

sin (θ) θα−3 dθ = (−1)k+1(α− 2)(kπ)α−3Jk(α− 3)

=
(−1)k+1(kπ)α−1

α− 1

[
1− Jk(α− 1)

]
.

(13)

Finally, one proves the claim by substituting equation (13) in equation (12).
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Asymptotics of Jk(β)

The function Jk(β) was defined in equation (8) for β < 0 and satisfies the recurrence relation
given in equation (9), which allowed us to extend its domain of definition to β ≥ 0. We now claim
the following estimate for Jk:

Proposition 2.2. If k > 0 and β < 0, then |Jk(β)| ≤ 2.

Proposition 2.2 implies the following asymptotic behavior for Jk, obtained by substituting (9)
recursively:

Jk(β) = 1− (β)2
(kπ)2

+
(β)4
(kπ)4

− · · ·+ (−1)n
(β)(2n)

(kπ)2n
+O

(
k−2n−2

)
, k → ∞ . (14)

The symbol (a)n in equation (14) denotes the Pochhammer Symbol for the descending factorial,
defined as (β)n := β(β − 1) · · · (β − n+ 1).

Remark 2.3. Note that the series in equation (14) converges in k for all fixed β and number of
terms n. Nonetheless, the series is divergent in n for fixed β, as the terms in the numerators grow
factorially.

Proof of Proposition 2.2. We first note that∫ (n+2)π

nπ

sin (θ) θβ dθ =

∫ π

0

[
(nπ + θ)

β − ((n+ 1)π + θ)
β
]
sin(nπ + θ) dθ

= (−1)n
∫ π

0

[
(nπ + θ)

β − ((n+ 1)π + θ)
β
]
sin(θ) dθ .

Since β < 0, then f(θ) := (nπ + θ)
β − ((n+ 1)π + θ)

β is a non-negative decreasing function in the
interval [0, π]; therefore, using that n ≥ k > 0, we have the following estimate:∣∣∣∣∣

∫ (n+2)π

nπ

sin (θ) θβ dθ

∣∣∣∣∣ ≤
∫ π

0

[
(nπ)

β − ((n+ 1)π)
β
]
sin (θ) dθ = 2πβ

[
(n)

β − (n+ 1)
β
]
.

We now sum all periods to obtain an alternating series, which is bounded by its first term, and get
the estimate∣∣∣∣∫ ∞

kπ

sin(θ) θβ dθ

∣∣∣∣ ≤ 2πβ
[
(k)

β − (k + 1)
β
+ (k + 2)

β − (k + 3)
β
+ · · ·

]
≤ 2πβkβ ,

which proves the claim.

When k is large enough, we can simply truncate the expansion in equation (14) when the term
in the summation is smaller than the machine precision or than a given tolerance fixed beforehand.
As the terms are alternating and decreasing, the truncation error is bounded by the first omitted
term.

3 Numerical quadrature for small k
While the integrals Ik for large k may be obtained by using the asymptotic expansion given

in equation (14), those for which k is small must be calculated by other means, such as numerical
quadrature. In order to create a standalone code, i.e., which does not require extended preci-
sion quadrature, we approximate the integrals involved by rational functions. When using the
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double-precision floating-point arithmetic (IEEE Std 754-2008 “binary64” [1]), all digits can
be obtained solely by the asymptotic formula when k > 10.

The representation of Ik(α, h) in terms of the hypergeometric function in equation (3) moti-
vated us to implement a function in the following form:∫ π

0

cos (kθ) θα dθ =

{
παα fk(α) , if k is odd ,

παα(α− 1) fk(α) , if k is even .
(15)

where fk(α) is a rational function on α. We remark that in equation (15) the zeros of the functions
were factorized in the expression so we retain relative accuracy close to those points. We supplement
this problem with the following condition:

fk(0) = lim
α→0

1

α

∫ π

0

cos (kθ) θα dθ = lim
α→0

∫ π

0

cos(kθ)

(
θα − 1

α

)
dθ = −Si(kπ)

k
. (16)

Moreover, when k is even, we impose:

fk(1) = lim
α→1

1

α(α− 1)π

∫ π

0

cos (kθ) θα dθ = lim
α→1

1

απ

∫ π

0

cos (kθ)

(
θα − 1

α− 1

)
dθ

=
1

π

∫ π

0

cos (kθ) θ ln (θ) dθ = − 1

kπ

∫ π

0

sin (kθ) ln (θ) dθ =
γ + ln (kπ)− Ci (kπ)

k2π
.

(17)

(The last identity holds by equation (5).) We refer the reader to equation (4) in Remark 1.1 for
the definitions of Si(x) and Ci(x).

4 Software availability and implementation details

The software for the method was implemented in the C++ programming language in a
single header file gcikpi.hpp6, and we also provided a Python interface. All software is publicly
available in a repository at https://github.com/gffrnl/generalized-cosine-integrals-kpi7

licensed under MIT License to be permissive regarding code reuse and modification8.
The quadrature for small k mentioned in Section 3 was performed using the Double Exponen-

tial Method (tanh-sinh) [3, 11] in multiple-precision arithmetic, and the coefficients of the rational
functions were computed by the Remez Algorithm [10]. All numerical methods employed are
available in the Boost Libraries’ Math Toolkit 4.1.1 [9]. After implementation in machine
precision arithmetic, we systematically tested all the procedures by comparing them against high-
precision quadratures, which demonstrated a relative error of approximately the machine epsilon
on the whole range α ∈ [0, 2].

6Which stands for “generalized-cosine-integrals-kpi”. We implemented the method as single C++ Callable
Type GzedCosineIntegralskPi (up to this moment only in double-precision floating-point arithmetic) whose con-
structor GzedCosineIntegralskPi(double alpha, double h) takes only the parameters α and h. After the object’s
instantiation, the values of Ik for each k can be obtained by the overloaded operator () with signature double
operator()(size_t k).

7See the README.md file in the repository for software requirements and the usage of the Python interface.
8The Python interface to the software easily allows the creation of Jupyter® Notebooks and, conse-

quently, Google Colaboratory™ (Colab) Notebooks. Therefore, to show the usage of the software this way,
we have also made Colab Notebooks publicly available at https://drive.google.com/drive/folders/1jCwQQR_
jWTeCUMxnlZLj4kN04MoWjbLu?usp=sharing (see, e.g., the file test-suit-1.ipynb for an example of how to clone the
repository to a Notebook and use the Python interface).
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Figure 1: Error in ulps against α for k = 100. Source: The authors.
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Figure 2: Error in ulps against α for k = 1, . . . , 100. Left: maximum and minimum errors. Right:
maximum absolute and average absolute errors. Source: The authors.

5 Accuracy tests and final comments
To perform independent accuracy tests, we compared the values generated by our implemen-

tation with those obtained in MapleSoft™ 15 software using multiple precision. The results are
summarized in Figures 1 and 2, which present plots with the error in ulps (units in the last
place) [6]. A testing unit is available along with the software in a Jupyter file, can be executed
remotely from Google Colab, and reproduces the reported results.

Finally, we remark that the expression in equation (10) is ill-conditioned when k is even,
especially when α is close to 1. To solve the problem, we rewrote the expression as

Ik(α) =
[
Γ(α)− 1

]
sin

(πα
2

)
+
[
sin

(πα
2

)
− 1

]
+

[
1− (kπ)α−1

]
+ (kπ)α−1

[
1− Jk(α− 1)

]
, (18)
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since Jk(β)− 1 is obtained directly from the definition of Jk(β). One may obtain the other terms

from the following identities: Γ(α)− 1 = expm1(lgamma(α)), sin
(
1
2πα

)
− 1 = − cos2

(
1
2πα

)
1 + sin

(
1
2πα

) and

1 − (kπ)α−1 = − expm1 ((α− 1) ln(kπ)) (expm1(x) and lgamma(x) stand for implementations of
exp(x)−1 and ln(|Γ(x)|) in C-like programming languages, whose usage is more reliable and accu-
rate than performing the naive compositions; for details, see https://en.cppreference.com/w/
cpp/numeric/math/expm1 and https://en.cppreference.com/w/cpp/numeric/math/lgamma).
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