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Abstract. The atmospheric water cycle is dynamically unstable. The IBM prediction method is
tested in high-resolution atmospheric water cycle predictions with a cloud-resolving model (CRM)
with subgrid equations for viscous turbulence processes extracted from the compressible Navier-
Stokes equations showing that the atmospheric water cycle has higher predictability under this
method than under straightforward integrations of the CRM, both for moderate and high Reynolds
numbers.
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1 Introduction
“Climate change” is the climate transition to a new equilibrium of thermodynamical forces af-

ter disruption. More pressing than predicting the new equilibrium state is to predict how fast the
transition will take place. For example: should the Amazon basin and its neighbor crop area dry
up, would the change be abrupt? The atmospheric water cycle is improperly described in current
climate models to figure this out. There are two major reasons for this: the cost of integrating
with high space resolution a non-hydrostatic system of equations is high and the atmospheric water
cycle is dynamically unstable [2, 8].

In [6] a cloud-resolving model (CRM) was presented along with a dynamical stabilization method
for its dynamics. The CRM is the anelastic extension of the incompressible Navier-Stokes equations
toward atmospheric convective processes [9], such as cyclones and hurricanes, coupled to subgrid
equations for viscous turbulence processes derived from the compressible Navier-Stokes equations.
The dynamical stabilization method, named Insertion and Brownian Motion (IBM), employs data-
assimilated determining variables to control trailing variables through deterministic perturbations
made in every time step (determining variables were first defined in [1]). The method was derived
in [5]. The core of its derivation is Dyson’s formula, whose proof for transport operators with fields
defined on a bounded open set in Rn is presented in [4] (for fields in Rn see [5], Appendix).

In [6] the CRM was integrated with low space resolution, namely 200km x 200km x 0.5km, using
a direct numerical method (LU decomposition [7]) for solving the true pressure equations and a
second-order accurate in time explicit Runge-Kutta method [7] for solving the evolution equations.
Space was discretized with second-order centered finite-differences. The reaction-diffusion parame-
ter ξ for turbulence was set to a constant and the state equation, condensation rate, radiation and
surface temperature were set using the laminar pressure. The IBM prediction method was tested
in this framework. In this work the CRM is integrated with high space resolution, namely 30km x
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30km x 0.5km, using Jacobi iterations [7] for solving the numerical pressure equations ([3], eq. 4c)
and the fourth-order accurate in time explicit Adams-Bashforth method [7] for solving the evolution
equations. In the CRM, ξ is set to the Smagorinsky-Lilly model for eddy viscosity [10] and the state
equation, condensation rate, radiation and surface temperature are set using the total pressure (i.e.
the sum of the laminar and turbulent pressures). The IBM method is tested in this new framework.

The updates in the CRM are described in section 2. The high-resolution numerical treatment is
described in section 3. Results for moderate and high Reynolds numbers are presented in section
4. Conclusions are drawn in section 5.

2 Model
The CRM is described in [6]. The following changes were made to it in this work:

1. The state equation p = RρT, where R is the ideal gas constant, applies to hydrostatic flows
(slow motion of infinitesimal elements). For laminar flows,

p̄ = Rρ̄T̄ (1)

is a good approximation. Assuming

p̄+
∨
p = Rρ̄T̄ (2)

is a good approximation for turbulent flows, where p̄ and
∨
p are the laminar and turbulent

pressures, the state equation, condensation rate, radiation and surface temperature are set
using equation 2 instead of 1;

2. The reaction-diffusion parameter ξ for turbulence is set to the Smagorinsky-Lilly model for
eddy viscosity [10]: ξ = (Cs∆)2

√
s, where Cs ∈ [0.1, 0.2] is the Smagorinsky constant,

∆ =
√
∆x2 +∆y2 for the horizontal value or ∆z for the vertical value and
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wherein ū, v̄ and w̄ are the laminar wind velocity components.

3 Numerics
The numerical pressure ([3], eq. 4c) is easier to treat and less costly to compute than the true
pressure ([6], eq. 65 or 70), especially in curved domains. It is a good approximation to the true
pressure for “intermediate” time step sizes, dt. The CRM is set with rotating Cartesian coordinates
in a three-dimensional rectangular domain and integrated with space resolution 30km x 30km x
0.5km and reference time step size dt = 2.5s using 100 Jacobi iterations for solving the numerical
pressure equations and the fourth-order accurate in time explicit Adams-Bashforth method for
solving the evolution equations. Space is discretized with second-order centered finite-differences.
The boundary conditions are described in [6]. In this numerical framework the CRM has horizontal
and vertical diffusion bounds strictly between 1 · 107m2/s and 2 · 107m2/s and between 1 · 103m2/s
and 2 · 103m2/s, respectively.

The IBM method is described in [6]. In this work the vertical laminar wind velocity component
is not perturbed in it, only the turbulent wind velocity components and the specific humidity are
perturbed, and the laminar and turbulent pressure fields are frozen within one reference time step
long time intervals.
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4 Results
The horizontal laminar wind velocity components and the potential temperature are set as control
variables in the IBM prediction method. In practice their initial values would be data-assimilated.
Here they are taken from the reference run, i.e. the run simulating the true state evolution. The
global root-mean-square error plots obtained from free (no data-assimilation), insertion (straight-
forward integration with initial control values taken from the reference run) and IBM runs for
moderate and high Reynolds numbers are presented next. In both case studies the initial max-
imum and mean absolute values of the total wind velocity components in the reference run are
about u = 81m/s, v = 56m/s, w = 0.24m/s and u = 12m/s, v = 10m/s, w = 0.02m/s, respectively
(the total wind velocity is the sum of the laminar and turbulent wind velocities).

4.1 Moderate Reynolds number
In this case study all the horizontal and vertical laminar viscosities are set to 2 · 106m2/s and
200m2/s, respectively. With ξ set to the Smagorinsky-Lilly model for viscosity the reference and
free runs come out numerically stable in this framework, showing that the turbulent wind is properly
balancing the laminar wind. Figure 1 shows the evolution of the condensation rate, the vertical
laminar wind velocity component and the potential temperature global errors obtained from free,
insertion and IBM runs with same initial state. One sees that the condensation rate has higher
predictability under the IBM method than under the insertion method in this framework.

Figure 1: Global rms error plots of the condensation rate (top), the vertical laminar wind velocity com-
ponent (center) and the potential temperature (bottom) obtained from free (black), insertion (blue) and
IBM (red) runs at moderate Reynolds number. Source: author.

4.2 High Reynolds number
In this case study all the horizontal and vertical laminar viscosities are set to 100m2/s and 0.01m2/s,
respectively. With ξ set to the Smagorinsky-Lilly model for viscosity the reference and free runs
come out numerically stable in this framework, showing that the turbulent wind is properly balanc-
ing the laminar wind. Figure 2 shows the evolution of the condensation rate, the vertical laminar
wind velocity component and the potential temperature global errors obtained from free, insertion
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and IBM runs with same initial state. One sees that the condensation rate has higher predictability
under the IBM method than under the insertion method in this framework.

Figure 2: Global rms error plots of the condensation rate (top), the vertical laminar wind velocity com-
ponent (center) and the potential temperature (bottom) obtained from free (black), insertion (blue) and
IBM (red) runs at high Reynolds number. Source: author.

5 Conclusion
Nature is teeming with dynamically unstable processes that are roughly described in climate models
because they are hard to predict under straightforward integrations of models. The atmospheric
water cycle is an example: the condensation rate is dynamically unstable because the vertical
laminar (hence the vertical total) wind velocity component and the temperature are so when the
turbulent wind velocity components are strongly perturbed from their reference values. Viscous
fingering (a process by which part of the oil is retained in the well) in Oil Recovery, crack for-
mation in Civil Engineering and the spread of airborne diseases (which bears similarity with the
cloud formation process where water vapor is the virus, condensation is the infection process and
precipitation is the emission process) in Biology are additional examples. The CRM was integrated
with high space resolution using numerical pressures, Jacobi iterations for solving the numerical
pressure equations and the fourth-order accurate in time explicit Adams-Bashforth method for
solving the evolution equations. In the CRM, the reaction-diffusion parameter ξ for turbulence
was set to the Smagorinsky-Lilly model for eddy viscosity and the state equation, condensation
rate, radiation and surface temperature were set using the total pressure. With these settings
the turbulent wind properly balanced the laminar wind in both case studies - moderate and high
Reynolds numbers. The IBM prediction method was tested in this framework with the horizontal
laminar wind velocity components and the potential temperature set as control variables, showing
that the atmospheric water cycle has higher predictability under this method than under straight-
forward integrations of the CRM, both for moderate and high Reynolds numbers. The future work
may consist in exploring Multigrid methods [7] within a numerical framework where interpolation
is efficient, such as spectral elements, to render the iterative CRM pressure solvers more accu-
rate; or else in searching the CRM for control modes of its dynamics (i.e. minimal sets of modes
of control variables, such as the horizontal laminar wind velocity components and the potential
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temperature, such as the IBM method can suitably predict the evolution of all variables when the
remaining unstable modes of the control variables and the turbulent wind velocity components are
perturbed); or yet in using robust IBM-driven CRM data to incorporate deterministic ML param-
eterizations of turbulent processes, i.e. model error, into the anelastic system and then search this
reduced CRM system for control modes of its dynamics.
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