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Abstract. We investigate invasion scenarios of vector-borne diseases in yet non-endemic areas of the
world, where imported human cases from endemic countries can trigger outbreaks of autochtonous
cases. We focus mainly on vector-borne diseases like dengue fever, chikungunya and Zika, transmit-
ted by mosquitoes. For increasing mosquito abundance due to changing environmental conditions
the epidemiological system approaches from below a critical epidemiological threshold, at which
large critical fluctuations appear, and power law scaling can be observed, like previously described
e.g. in the COVID-19 pandemic after the lockdown lifting in mid 2020.
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1 Introduction
The epidemiological threshold between exponential growth and exponential decline has to be

redefined in systems with import which originates from external reservoirs. Here still we have
supercritically an exponential increase, but subcritically a stationary state can be reached via
imported infected disease cases in abundance of susceptibles.

During the COVID-19 pandemic many countries experienced a harsh lockdown which could not
be sustained for long time. However, the lifting of the lockdown should avoid a new exponential
explosion of cases, such that we approached from below the above described epidemic threshold
including import. Close to the threshold, as in many critical phenomena and especially in perco-
lation known for long time, large fluctuations occur. Hence the system was regulated close to such
a state with large fluctuations and power law scaling [1]. We investigate in the example of the
Basque Country with very good data on COVID-19 cases, hospitalizations and ICU admissions this
scenario in the second half of 2020, which also gives a good basis for the analysis of the subsequent
introduction of vaccines and its impact in 2021 [6].

In the present case study, well in line with the recent climatic changes, in areas where vector-
borne diseases like dengue fever, chikungunya and Zika e.g. are not established but tropical
mosquito invasion started to be observed in recent years, we are again in a subcritical regime
approaching from below the epidemic threshold, where now in the Basque Country we have good
data on imported cases, returning travelers from endemic countries infected, and proxy data for
mosquito abundance, in this case egg counts, modulating the infectivity to eventual autochthonous
cases. Hence risk maps are desired, again in an epidemiological scenario of approaching an epi-
demiological threshold from below.

In both case studies concepts from dynamical isotropic percolation (dyIP) come to place, with
import as a conjugated external field in technical terms of phase transitions. Data analysis and
stochastic process analytics and simulations give insight into the role of import causing eventual
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large isolated outbreaks, far from the usually considered mean field approximation of simple ODE
epidemic models.

2 COVID-19 and Subcritical Fluctuation Scaling

As a first qualitative model we now will investigate the SIRS model, and later extend to a fully
developed COVID-19 model, used to give management advices to the Basque government during
the COVID-19 pandemic crisis. These models caught especial attention during the initial phase
of exponential growth in spring 2020, when we were involved by the Basque government to advice
on the basis of their day to day notfication data on reported cases, hospitalized and intensive care
unit admited (ICU) and deceased cases, and continued into the lockdown lifting phase in summer
2020 and the vaccination intorduction phase in 2021. Here we concentrate on the phase after the
lockdown had to be lifted, but still keeping the system away from a new exponential explosion.

As a first model to understand the essential dynamics we consider an SIRS model with import,
since travel restrictions were lifted at the same time of lockdown relaxations, i.e. a susceptible,
infected, recovered model, SIR, with infection rate β, recovery rate γ, and an at the time less
important waning immunity rate α and total population size N

d

dt
S = αR− β

N
S(I + %N)

d

dt
I =

β

N
S(I + %N)− γI (1)

d

dt
R = γI − αR

including imported disease cases from outside the study area Y = %N . This captures e.g. Basque
people traveling out and come back infected, or non-Basque people traveling to the Basque country
and infecting local people.

In the initial spreading regime, when nearly everybody is still susceptibles or susceptibles are
present in abundance, i.e. S/N ≈ 1, we have

d

dt
I = β

S

N
(I + %N)− γI ≈ (β − γ)I + β%N (2)

with the system under community spreading control, i.e. ε := β − γ < 0 due to still some sanitary
restrictions in place, but allowing for people to travel, hence possible imported cases igniting new
cases in the study area.

A simple stochastic version of such an epidemiological situation with import and long immunity
α→ 0

d

dt
p(S, I, t) = β

S + 1

N
((I − 1) + %N) p(S + 1, I − 1, t)

+γ(I + 1) p(S, I + 1, t) (3)

−
(
β
S

N
(I + %N) + γI

)
p(S, I, t)

shows already large fluctuations and highly non-Gaussian distributions of disease cases, see e.g. [1]
for the qualitative behaviour observed in stochastic simulations.
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Further, it has in mean field approximation the solution, using S/N = 1, for the expected
number of infected cases 〈I〉(t) :=

∑N
I=0 Ip(I, t) as

〈I〉(t) = I(t0) · e−(γ−β)(t−t0) +
β%N

γ − β

(
1− e−(γ−β)(t−t0)

)
(4)

which gives some insight into the qualitative behaviour of such subcritical epidemiological systems
subject to imported cases, as the information of initial conditions gets faded away and a stationary
solution is being approached, stabilized by imported cases, though local transmission cannot be
keeping the disease spreading in the population of investigation.

Interestingly, at criticality ε = β − βc = 0, i.e. here βc = γ, the solution of the dynamic mean
field equation is given by

〈I〉c(t) = I(t0) + βc%N · (t− t0) (5)

signaling here a linear, and in spatially extended systems a general power law behaviour with an
exponent different from unit for small spatial dimensions, e.g. in two-dimensional systems.

Hence we have asymptotically a homogeneous function relation [5], here in our epidemiological
application given by

〈I〉(t, ε, %) = tθ̂ · F (ε · t1/ν̂‖ , % · tµ̂/ν‖) (6)

and for the SIR as a representative of the dynamical isotropic percolation univeersality class giving
known critical exponents in 2 dimensional spreading and in mean field approximation

θ̂d=2 = 0.5844 , θ̂m.f. = 0 (7)

and
ν̂d=2 = 1.5078 , ν̂m.f. = 1 (8)

and µ̂ as a new exponent with µm.f. = 1. The explicit for of the scaling function F is most of the
time unimportant, but the feature of a homogeneous function indicates self-similarity at criticality
with power law behaviour, also for cluster distributions.

The same qualitative behaviour, as we just decribed in the simple SIR system, was also found
in COVID-19 model after lockdown lifting as given in a SHARUCD modelling framework

d

dt
S = −β(t)

S

N
(H + φA+ (1− η)%(t)N)

d

dt
H = η(1− ν)β(t)

S

N
(H + φA)− (γ + µ)H

d

dt
A = (1− η)β(t)

S

N
(H + φA+ %(t)N)− γA

d

dt
R = γ(H + U +A) (9)

d

dt
U = νηβ(t)

S

N
(H + φA)− (γ + µ)U

d

dt
CH = η(1− ν)β(t)

S

N
(H + φA)

d

dt
CA = ξ(t)(1− η)β(t)

S

N
(H + φA+ %(t)N)

d

dt
CR = γ(H + U + ξA)

d

dt
CU = νηβ(t)

S

N
(H + φA)

d

dt
D = µ(H + U)
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describing additional features of COVID-19 epidemiology like distinguishing the infected as mild
or asymptomatic cases A and severe or hospitalised cases H, ICU cases U , deceases D and its
cumulative cases C, as empirical data were always reported as cumulative cases, never as indicences
or prevalences of infected, see [1] for more details. In brief, besides the usual SIR-parameters
of infection rate β, recovery γ and disease induced death rate µ, we have the hospitalization
ratio η and the ICU admission ratio ν and as a new and quite important parameter φ as the
contribution of infection of asymptomatic cases to the force of infection. Finally, ξ is the detection
rate of asymptomatic/mild cases, which increased during the year of 2020 due to increasing testing
capacity. This analysis helped then also in investigating the subsequent impact of vaccination
introduction from January 2021 on when vaccines developed in 2020 became accessible [6].

3 The SIRUV Model in Invasion Scenario Area, Including
Imported Cases and Reduced Mosquito Abundance

We now investigate our main application of epidemiological systems below and eventually close
to the epidemiological threshold of self-sustained transmission, and in its initial phase exponential
growth, versus import sustained subcritical clustered outbreaks. Basic parameters of vector-borne
disease models can be obtained fro endemic areas, and only minor alterations of the basic models
already give substantially different qualitative behaviour, especially in stochastic processes versions
of the models. Here we consider basic vector-borne disease models of SIRUV type, hence besides the
human disease compartments SIR also disease vectors V , i.e. infected mosquitoes, and unifected
disease models U , see [3, 4, 2] for further description of the modelling framework and its dynamical
behaviour.

In an area with no sustained transmission, but imported cases Y = %N and mosquitoes present,
with reduced supply rate (due to e.g. environmental constraints) of ψ(k) = νkmN with mosquito
abundance k < 1 as opposed to the one in endemic areas with k = 1 we have the following model,
introducing imported cases in the infection term for uninfected mosquitoes

d

dt
S = αR− β

mN
SV

d

dt
I =

β

mN
SV − γI

d

dt
R = γI − αR (10)

d

dt
U = ψ(k)− ϑ

N
U(I + %N)− νU

d

dt
V =

ϑ

N
U(I + %N)− νV

with the mosquito supply rate reduced. In endemic countries the same models hold, just for k = 1
and import close to negligible, i.e. % ≈ 0. Hence the model describes an epidemiological scenario
with reduced mosquito abundance, via k < 1 and imported cases Y = %N , from which we can
infer the risk of outbreaks of autochthonous cases I in the invasion scenario areas as opposed to
the endemic areas.

Since it is difficult to monitor adult mosquitoes contributing directly to the infection process,
the relative mosquito abundance k could be measured via surrogate data like the ovitrap counts
giving information about the related adult mosquitoes, as available in the case of the Basque
Country, Euskadi. Hence we can use

k =
ovitrap counts in invasion area
ovitrap counts in endemic areas

(11)
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in case of comparable traps in the different regions. The human imported cases Y are reported in
Euskadi, giving information about the import % via Y = %N with N ≈ 2.2 ·106 the population size
of Euskadi. To get a grip on eventual outbreaks of autochthonous infected cases I originating from
mosquito abundance k and import % we will now investigate the stochastic process of the SIRUV
dynamics.

4 Stochastic SIRUV Model in Invasion Scenario Areas
The stochastic SIRUV model is given by the dynamics of the probability p(X, t) of any realiza-

tion of the state vector X := (S, I,R, U, V )tr, of all dynamical variables of the SIRUV model, via
a discrete state and continuous time Markov process with master equation, see e.g. [8] with many
further references therein. Hence the dynamics of the probabilities is given by

d

dt
p(X, t) =

n∑
j=1

(
wj(X + ∆Xj) · p(X + ∆Xj , t) − wj(X) · p(X, t)

)
(12)

with n = 7 different transitions and deviation from state X as ∆Xj := rj . For the basic SIRUV
model for endemic area scenarios we have explicitly the following transitions wj(X) and its shift
vectors rj given by

w1(X) = αR , r1 = (−1, 0, 1, 0, 0)tr

w2(X) = β
mN SV , r2 = (1,−1, 0, 0, 0)tr

w3(X) = γI , r3 = (0, 1,−1, 0, 0)tr

w4(X) = ψ , r4 = (0, 0, 0,−1, 0)tr

w5(X) = ϑ
NUI , r5 = (0, 0, 0, 1,−1)tr

w6(X) = νU , r6 = (0, 0, 0, 1, 0)tr

w7(X) = νV , r7 = (0, 0, 0, 0, 1)tr .

(13)

With these wj(X) and rj specified we can calculate stochastic realization of the process via the
Gillespie algorithm, see e.g. for a recent account of the process [1] with further references.

In case of a well defined system size, we also can express the stochastic process in terms of
densities of the state variables, hence x1 := S/N , x2 := I/N , x3 := R/N , x4 := U/N and
x5 := V/N , hence state vector x := (x1, ..., x5)tr and its deviations now being small ∆xj := 1

N · rj .
Hence we can obtain the mean field ODE system and in Kramers-Moyal approximation of the
master equation to a Fokker-Planck equation a stochastic differential equation system, see e.g. [7]
for a more detailed description.

In areas with the invasion scenario we have the inclusion of import in the transition j = 5 given
by

w5(X) = ϑ
NU(I + %N) , r5 = (0, 0, 0, 1,−1)tr . (14)

and reduced ψ = ν · k · mN with k < 1. Now we are interested in the expected number of
autochthonous infected case, the expectation value or mean value defined by

〈I〉 :=
∑
X

I p(X, t) = 〈I(t)〉 (15)

which is due to temporally changing probabilities p(X, t) of the state X itself a time dependent
quantity 〈I〉(t), with its dynamics given by the dynamics of the probabilities p(X, t). This gives
after some calculations, see e.g. [8],

d

dt
〈I〉 =

∑
X

I
d

dt
p(X, t) =

β

mN
〈SV 〉 − γ〈I〉 (16)
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and in mean field approximation (neglecting variances and covariances), we obtain the ODE term
of the deterministic ODE system given above as

d

dt
〈I〉 =

β

mN
〈S〉〈V 〉 − γ〈I〉 (17)

hence the ODE system describes the stochastic process in terms of expectation values in mean
field approximation. Then the risk of autochthonous infected cases in expectation value is given
via the full stochastic process as function of imported cases, and mosquito abundance

〈I〉 = f(k, %) (18)

which we will tackle below. In an invasion scenario driven by imported cases we can derive under
certain conditions an analytical expression for 〈I〉 = f(k, %) in good numerical agreement with the
full dynamical system.

5 Analytic Results For Expected Risk of Autochthonous Cases
In an area with no sustained transmission, but imported cases Y = %N and mosquitoes present,

gives below the epidemiological threshold of exponentially growing autochthonous outbreaks the
expected number of autochthonous cases as

〈I〉∗ =
kβ ϑν

S0

N

γ − kβ ϑν
S0

N

· %N (19)

and in approximation of few or none autonomous cases I after a short transient of increasing
expectation of cases, hence in V (I) given, from time scale separation arguments [3, 2], by

V (I) =
ϑ
ν
I
N

1 + ϑ
ν
I
N

· kmN (20)

the approximation ϑ
ν
I
N � 1 can be used

V (I) =
ϑ

ν

I

N
· kmN . (21)

This approximation is in good agreement with the exact expression from Eq. (20) with nonlinear

dependence of V on I, with solution in form of 〈I〉∗ = ( 1
2q+

√
1
4q

2 + r)N with parameter dependent
constants q and r. Hence the expected risk of autochthonous cases I with relative mosquito
abundance k and imported cases Y = %N is given by the following multiplicative factors

〈I〉∗ = k · βeff ·
1

ε
· %N = f(k, %) (22)

with effective infectivity βeff = β ϑν
S0

N , import %N and 1/ε, with ε the distance towards criticality,
the epidemiological threshold above which exponential growth of autochthonous cases appears. The
approximation, Eq. (22) compares well numerically with the stationary state of the full SIRUV
system. The value of the approximation well below one autochthonous infected in expectation,
still can generate smaller or larger clustered outbreaks.

The exact stationary state expression, approximated in good numerical accuracy by 〈I〉∗ =
k · βeff · 1ε · %N , is explicitly given as

〈I〉∗ =

(
−1

2
q +

√
1

4
q2 + r

)
N (23)
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with b := kβ ϑν
S0

N , g := γ ϑν , giving q = 1
g (γ− b+ g%) and r = b

g%, initially evaluated for S0 = N the
whole population being susceptible. The stationary state equation Eq. (19) indicates that we have
in this application to invasion scenarios of vector-borne diseases we have a similar scaling close
to the epidemiological threshold as in the COVID-19 case, see Eq. (6), since this implies for the
stationary state the relation 〈I〉∗ = ε−θ̂ν̂‖ · F̃ (ε · %−µ̂). The scaling relation holds for non-linear as
well as for linear V (I), since we are in the regime of low numbers of infected I close to the critical
threshold. In conclusion, we have shown that epidemiological systems operating close to critical
thresholds are now more important to be considered than previously expected, and especially the
subcritical regime stabilized by external import is of increasing research importance.
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