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Abstract. Let q(G) be the minimum number of distinct eigenvalues taken over all real symmetric
matrices whose underlying graph is G. Using a linear time algorithm that diagonalizes any sym-
metric matrix associated to a unicyclic graph, we investigate the maximum eigenvalue multiplicity
for these graphs. As an application, we determine the value of q(G) for some family of tadpole
graphs, which are unicyclic graphs formed by adding an edge between a cycle and a path.
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1 Introduction
Let G = (V,E) be a simple graph with vertex set V = {1, 2, ..., n} and edge set E. We can

associate with G the collection of real n× n symmetric matrices defined by

S(G) = {A : A = AT and aij ̸= 0, for i ̸= j ⇔ {i, j} ∈ E}. (1)

We note that the diagonal entries of A ∈ S(G) are free to be chosen as well as the nonzero
values of aij , when {i, j} ∈ E. We denote by q(A) the number of distinct eigenvalues of a square
matrix A. For a given graph G, we define

q(G) = min{q(A) : A ∈ S(G)}. (2)

Clearly, if G has n vertices, then 1 ≤ q(G) ≤ n. Moreover, q(G) = 1 if and only if G has no
edges, since a matrix A ∈ S(G) with exactly one eigenvalue is necessarily a scalar multiple of the
identity matrix, which implies that G is the empty graph. The converse is clearly true. In the
other case, q(G) = n if and only if G = Pn, where Pn denotes the path on n vertices [8, Theorem
3.1]. In [1], it is shown that there is a great number of graphs G for which q(G) = 2. The value of
q(G) for some families of graphs, such as the join of a graph with itself, complete bipartite graphs
and cycles, is also determined. Interestingly, there always exists a graph G on n vertices with
q(G) = k, for each k = 1, 2, . . . , n [1, Corollary 3.6].

The knowledge of q(G) for arbitrary graphs is related to a general problem in combinatorial
matrix theory known as the inverse eigenvalue problem for graphs. Given a graph G, it consists
of characterizing the possible spectra of A such that A ∈ S(G) (see [10] for more details). It has
received considerable attention by many researchers as it still remains an open problem in general.
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In this direction, it is well known that if A(G) is the (0, 1) adjacency matrix of G and d is the
diameter of G, then q(A(G)) ≥ d + 1. Furthermore, if G is a tree (a connected acyclic graph),
then this result is true for all A ∈ S(G), which means that q(G) ≥ d+ 1 for trees [12]. While this
inequality is tight for some trees, such as paths or stars, equality does not necessarily hold for any
given tree. On the other hand, infinite families of trees for which equality holds are given in [2].

Our main interest lies in studying the value of q(G) when G is a unicyclic graph, i.e, a connected
graph with exactly one cycle. In this case, as we will see in this paper, it is possible to obtain
M ∈ S(G) such that q(M) < d + 1 if the cycle length is even. Using a linear algorithm for
symmetric matrices associated with unicyclic graphs, we determine q(G) for a family of tadpole
graphs, which are unicyclic graphs formed by adding an edge between a cycle and a path.

Our paper is structured as follows. The next section contains preliminary results concerning a
known bound for q(G). Section 3 presents the linear time algorithm which allows us to determine
the eigenvalue multiplicity of unicyclic graphs in some cases as well as the value of q(G) for tadpole
graphs. The last section presents concluding remarks.

2 Preliminary Results
In [1], the authors presented a lower bound for q(G) based on the length of an induced path

of G. Recall that the length of a path is the number of edges in that path, and that the distance
between two vertices (in the same component) is the length of a shortest path between those two
vertices.

Theorem 2.1. [1, Theorem 3.2] If there are vertices u, v in a connected graph G at distance d
and the path of length d from u to v is unique, then

q(G) ≥ d+ 1. (3)

From the above result, we can conclude that if G is a path on n vertices, then q(G) = n.
Furthermore, if Cn denotes the cycle on n vertices, then q(Cn) ≥

⌈
n
2

⌉
. The exact value for q(Cn)

was also presented in [1].

Lemma 2.1. [1, Lemma 2.7] Let Cn be the cycle on n vertices. Then

q(Cn) =
⌈n
2

⌉
. (4)

This last result is derived by applying an algorithm presented in [7], based on the original
algorithm from [6]. In [6], Ferguson presented an algorithm that builds a real symmetric n × n
matrix A with given spectrum λ1 > λ2 ≥ λ3 > λ4 ≥ λ5 > . . . such that A ∈ S(Cn) and aij > 0 for
all {i, j} ∈ E. In [7], the authors extend the work from [6] for Hermitian matrices whose graphs
are cycles also considering the case where the spectrum is given by λ1 ≥ λ2 > λ3 ≥ λ4 > λ5 ≥ . . ..
In this case, all aij > 0 for all {i, j} ∈ E, except for the entry an−1,n, which is negative. The
following result is an immediate consequence of this construction.

Corollary 2.1. [7, Corollary 3.4] Any eigenvalue of a Hermitian matrix of a cycle has at most
multiplicity 2.

Let us denote the multiplicity of the eigenvalue θ of a symmetric matrix A ∈ S(G) by mA(θ).

Lemma 2.2. [8, Corollary 2.3] Let P be a path that does not contain any edge of any cycle in G.
Then

mA(G\P )(θ) ≥ mA(G)(θ)− 1. (5)
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Lemma 2.2 implies Corollary 2.1 for symmetric matrices. In fact, Cn \ {v} is a path, for
any vertex v ∈ V (Cn), and for any eigenvalue θ of A ∈ S(Cn), we get 1 ≥ mA(Cn\{v})(θ) ≥
mA(Cn)(θ)− 1, and hence mA(Cn)(θ) ≤ 2.

The same argument was used in [8] for other classes of graphs, such as the tadpole graphs. A
(k, n)-tadpole graph is a graph on n + k vertices formed by adding an edge between a vertex of
cycle Ck and an endpoint of path Pn. Figure 1 illustrates a (4, 3)-tadpole graph.

Figure 1: (4, 3)-tadpole graph. Source: From the authors.

By Lemma 2.2, we also have that any eigenvalue of a tadpole graph has multiplicity at most 2
[8, Lemma 5.1]. In the next section we investigate the value of q(G) when G is a tadpole graph.

3 The Multiplicities of the Eigenvalues of a Unicyclic Graph

In [5], the authors presented a linear time algorithm named DiagSMUnicyclic (Algorithm 1)
that computes in a given real interval the number of eigenvalues of a symmetric matrix M ∈ S(G),
where G is a unicyclic graph. Given M ∈ S(G), we define G(M) as the weighted graph associated
to the matrix M . For a weighted graph G(M) and for a fixed real number x, the algorithm
computes the diagonal values of a diagonal matrix D congruent to M + xI. We recall that two
square matrices A and B of order n are congruent if there is an invertible matrix P such that
A = PTBP . By Sylvester’s Law of Inertia [11, Theorem 4.5.8], we have the following result.

Theorem 3.1. [5, Theorem 2.2] If D is the diagonal matrix produced by the algorithm
DiagSMUnicyclic(G(M),−x), then the number of positive, negative and zero diagonal entries in D
is equal to the number of eigenvalues of M which are greater, smaller and equal to x, respectively.

For the execution of Algorithm 1, the cycle vertices v1, ..., vk are ordered first, where each vj
is the root of the pendant tree Tj . Then, the vertices of Tj , for j = 1, ..., k are ordered so that if
vc is a child of vj , then c > j. Initially, di := mii + x for all vi. Then it processes the vertices of
each Tj bottom-up, towards the root vj (Step 2, Alg.1), calling algorithm DiagonalizeW (Alg.2).
After the diagonalization of Tj if its root vj has a child with zero value, then the edges of the cycle
adjacent to vj are removed if they haven’t already been removed. Finally, the vertices of the cycle
Ck, from vk to v1, are processed (Step 3 and 4, Alg. 1).

One of the advantages of this algorithm is that it allows us to determine the maximum multi-
plicity of the largest (or the smallest) eigenvalue for matrices of unicyclic graphs.

Proposição 3.1. If G is a connected unicyclic graph, then the multiplicity of the largest (or the
smallest) eigenvalue of a matrix M ∈ S(G) is at most 2.

Proof. Let x be the largest eigenvalue of M ∈ S(G), where G is a unicyclic graph, and let us
apply Algorithm DiagSMUnicyclic(G(M),−x). By Theorem 3.1, all dj ≤ 0, since x is the largest
eigenvalue of M . Assume that dj = 0 for a vertex vj ̸= v1, so that vj has a parent vk in G. Because
dj is 0, at the time vk is processed, it has a child with value 0. If vj is not a cycle vertex, then the
algorithm assigns the positive value 2 to one child c of vk, by Algorithm 2. Theorem 3.1 implies
that M has an eigenvalue λ > x, a contradiction with the fact that x is the largest eigenvalue of
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Algorithm 1: Algorithm DiagSMUnicyclic(G(M), x) [5]
Input: weighted unicyclic graph G(M) with ordered

vertices v1, ..., vn and scalar x

Output: diagonal values d1, ..., dn

1. Set di := mii + x, for all i

2. Apply DiagonalizeW(Tj , x) (Algorithm 2) to each tree Tj , 1 ≤ j ≤ k,
skipping the initialization step already performed.
If vj has a child with zero value, remove the edges on the cycle
adjacent to vj, if they haven’t already been removed.

3. If an edge vj−1vj , for some 1 ≤ j ≤ k, was removed in Step 2, then
apply algorithm DiagonalizeW(P, x) to each path P that is not
an isolated vertex choosing the endpoint of P with smaller
index as the root.

4. If the cycle Ck was not disconnected in Step 2, then
apply procedure DiagSMCycle(d1, d2, ..., dk) (Algorithm 3).

Algorithm 2: DiagonalizeW(T (M), x) [5]
Input: weighted tree T (M) with ordered vertices

v1, ..., vn and scalar x

Output: diagonal values d1, ..., dn

Initialize di := mii + x, for all i

For j = n to 1

if vj is not a leaf then continue
else if dc ̸= 0, for all children c of vj, then

dj ← dj −
∑ (mcj)

2

dc
summing over all children of vj

else
select one child c of vj for which dc = 0

dj ← −
(mcj)

2

2
; dc ← 2;

if vj has a parent vℓ, remove the edge vjvℓ.
end loop

M . If vj is a cycle vertex and vj ̸= v2, then by Algorithm 3 its diagonal value is replaced by 2,
a contradiction again. In case that vj = v2, by the final step of Algorithm 3, the value of v2 will
be modified to 2 unless z2 = a12 = 0 and d2 = d1 = 0, which means that x is an eigenvalue of M
with multiplicity 2. Hence x is an eigenvalue of multiplicity 2 or all dj < 0 except for the diagonal
value d1, which must be 0 at the end of the algorithm in the case that x is a simple eigenvalue.
The proof for the smallest eigenvalue of M is analogous.

We remark that for unicyclic graphs with an odd cycle it is known that at least one of the
largest and smallest eigenvalues must be simple [3, Lemma 3.3].

The next result presents the value q(G) for a (k, n)-tadpole graph G when k < 2n, obtained by
applying algorithm DiagSMUnicyclic. We note that if k is odd, then any shortest path between
two vertices of G is the unique shortest path. By Theorem 2.1 q(G) ≥ n+ k−1

2 +1 = diam(G)+1.
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Algorithm 3: Procedure DiagSMCycle(d1, d2, ..., dk) [5]
Set TriangDiagonalized := false; z2 := m12, zk := m1k, zj := 0, 3 ≤ j ≤ k − 1.

For i = k to 3 do the following
If di ̸= 0 then

di−1 ← di−1 −
(mi,i−1)

2

ai
; d1 ← d1 −

(zi)
2

di
; zi−1 ← zi−1 −

mi,i−1

di
zi; //case 1

else

β ← 1

2
·
(
zi−1 − zi ·

(
di−1

2 mi,i−1
+mi,i−1

))
; γ ← zi ·

(
1− di−1

2(mi,i−1)2

)
+

zi−1

mi,i−1
;

di ← 2; di−1 ← −
(mi,i−1)

2

2
; d1 ← d1 + 2β2 1

(mi,i−1)2
− γ2

2
; //case 2

if i ≥ 4 then
zi−2 ← zi−2 −

mi−1,i−2

mi,i−1
· zi;

i← i− 1;

else
TriangDiagonalized← true;

end loop.
If TriangDiagonalized = false and z2 ̸= 0 then

if d2 ̸= 0 then

d1 ← d1 −
(z2)

2

d2
;

else

d2 ← 2; d1 ← −
(z2)

2

2
.

Return (d1, d2, ..., dk).

On the other hand, if k is even, we can guarantee that G has two vertices having a unique shortest
path whose length is n + k

2 − 1. Thus, q(G) ≥ n + k
2 = diam(G). Hence, q(G) ≥ n +

⌈
k
2

⌉
. Next,

we use the diagonalization algorithm to prove that in fact q(G) = n+
⌈
k
2

⌉
.

Theorem 3.2. If G is a (k, n)-tadpole graph with 3 ≤ k < 2n then

q(G) = n+

⌈
k

2

⌉
. (6)

Proof. If k < 2n, then
⌊
k
2

⌋
≤ n − 1. We note that independently of the matrix M ∈ S(G), when

we apply DiagSMUnicyclic(G(M),−x) for x equals to one of the n− 1 eigenvalues of path Pn−1,
then the diagonal entry of the last vertex of Pn−1, counting from the pendant vertex of G, will
be zero. Then, the algorithm will replace this zero value by 2 and it will replace the value of the
last vertex of Pn by a negative one, removing the edge that connects the path Pn to the cycle Ck.
Thus, using the algorithm from [7] we can obtain a principal submatrix M1 of M with respect the
cycle Ck such that

⌊
k
2

⌋
eigenvalues of M1 can be chosen among the n− 1 eigenvalues of Pn−1 and

each one with multiplicity 2 in M1. This implies that each of these
⌊
k
2

⌋
eigenvalues of M1 is an

eigenvalue of M with multiplicity 2. Hence, if k is even, we have q(M) ≤ n+ k
2 , and if k is odd we

have that q(M) ≤ n+ k−1
2 + 1. By Theorem 2.1 we conclude that q(G) = n+

⌈
k
2

⌉
.

In order to prove the case where k = 2n, we need the following lemma. We write M [G − v]
to denote the submatrix of M obtained by deleting the row and the column corresponding to a
vertex v of G.
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Lemma 3.1. Let Ck be a cycle on n vertices, M ∈ S(Ck) and v ∈ Ck. Suppose that λ is a simple
eigenvalue of M and M [Ck \ v]. Then, there exist N ∈ S(Ck) and x ∈ R such that Nij = Mij if
(i, j) ̸= (v, v), Nvv = x and mN (λ) = 2.

Proof. Let u be a neighbor of v and viewM [Ck\v] as rooted in u. Applying DiagSMUnicyclic(M,−λ),
d
(M)
u is assigned with 0 because λ is an eigenvalue of M [Ck \ v]. Besides, z(M)

2 = 0 after the step
i = 3 of Alg. 3. Indeed, if z(M)

2 ̸= 0, d(M)
u would be replaced by 2 and d

(M)
v by −(z

(M)
2 )2/2 ̸= 0, a

contradiction, since λ is an eigenvalue of M by hypothesis. Let y be the final value assigned to d
(M)
v

at the end of the algorithm. We note that y ̸= 0, since mM (λ) = 1. Let δ ∈ R and N ∈ S(Ck) such
that N = M , except for the entry Nvv which is equal to Mvv + δ. Let d

(A)
v denote the assignment

of the vertex v in DiagSMUnicyclic(A,−λ). Then, the algorithm DiagSMUnicyclic(N,−λ) assigns
y + δ to d

(N)
v at the end of the algorithm. Indeed, in each step of DiagSMUnicyclic(N,−λ) it

will be true that d
(N)
v = d

(M)
v + δ, d(N)

w = d
(M)
w for w ∈ V (Ck) \ {v} and z

(N)
ℓ = z

(M)
ℓ for ℓ ≥ 2.

And, in the last step d
(N)
v = d

(M)
v + δ = y + δ. To conclude the proof, we only need to choose

x = Mvv − y.

We are now ready to prove the next result. We denote the spectrum of M (i.e., the multiset of
its eigenvalues) by Spec(M).

Theorem 3.3. If G is a (2n, n)-tadpole graph, then

q(G) = 2n. (7)

Proof. Let e = {u, v} be the edge connecting C2n to Pn, where u ∈ C2n and v ∈ Pn. Let w
be the neighbor of v in Pn and let Pn−1 = Pn \ v. Finally, let λ1 < λ2 < · · · < λn be a
list of any n real distinct numbers. By [9, Theorem 1] there exists M1 ∈ S(Pn−1) such that
Spec(M1) = {λ1, λ3, λ4, . . . , λn} and {λ2} ⊂ Spec(M1[Pn−1 \ w]). From the application of the
algorithm from [6], there exists M2 ∈ S(C2n) such that Spec(M2) = {λ[2]

1 , λ2, λ
∗, λ

[2]
3 , λ

[2]
4 , . . . , λ

[2]
n }

and {λ2} ⊂ Spec(M2[C2n \ u]), where λ∗ is a real number such that λ2 < λ∗ < λ3.
Now, Lemma 3.1 guarantees there exists x ∈ R, x ̸= (M2)u,u and N ∈ S(C2n) such that N = M2

for (i, j) ̸= (u, u), Nu,u = x and mN (λ2) = 2. Let M ∈ S(G) such that M [Ck] = M2, M [Pn \ v] =
M1, Mu,v = Mv,u = δ > 0 and Mv,v = λ2 + δ2

x−Mu,u
. Running DiagSMUnicyclic(M,−λi) for

i ̸= 2. Since, λi is an eigenvalue of Pn−1 then it will assign zero to dw. Following that, we
process the vertex v. Since w is a child of v with dw = 0, then dv = − δ2

2 , dw = 2 and the
relation between v and its parent u is removed. Now DiagSMUnicyclic(M,−λi) becomes the same
as run DiagSMUnicyclic(M [Ck],−λi) . Since mM2(λi) = 2, then the algorithm will assign two
zero values in the end of the execution, which implies that each λi for i ̸= 2 is an eigenvalue of
M with multiplicity 2. On the other hand, if we apply DiagSMUnicyclic(M,−λ2), since {λ2} ⊂
Spec([M1[Pn−1 \w]) then the algorithm assigns 0 to the child of w, and so it will replace this value
by 2 and the value of dw by a negative one, cutting the edge between w and v. Next, it processes
the value of u by doing

du = Mu,u − λ2 −
δ2

Mv,v − λ2
, (8)

which is equal to x−λ2 by definition of Mv,v. From that point, DiagSMUnicyclic(M,−λ2) returns
the same value as DiagSMUnicyclic(N,−λ2) when running the cycle, which will assign two zeros
at end of the execution. Hence mM (λ2) = 2. Then {λ[2]

1 , λ
[2]
2 , . . . , λ

[2]
n } ⊂ Spec(M). Since |V (G)| =

3n, there exists λn+1, . . . , λ2n, where λi ̸= λj for i ∈ {1, . . . , n}, j ∈ {n+ 1, . . . , 2n} and such that
Spec(M) = {λ[2]

1 , λ
[2]
2 , . . . , λ

[2]
n , λn+1, . . . , λ2n}. So, this implies that q(M) ≤ 2n. By Theorem 2.1

we have that q(G) = 2n.
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4 Concluding Remarks
Using a linear time algorithm devised for symmetric matrices compatible with unicyclic graphs,

we were able to determine the minimum number of distinct eigenvalues for a class of tadpole
graphs. Even though it is true that q(G) ≤ n+

⌈
k
2

⌉
for a (k, n)-tadpole graph G [4, Corollary 49]

we believe that the linear algorithm applied in this work may be an efficient tool for deriving new
results concerning eigenvalue multiplicity of other classes of unicyclic graphs.
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