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Abstract. We propose a technique to recover linear potentials from the solution obtained from
cell-centered finite volume approximations to the scalar elliptic problem, i.e., the cell-centered po-
tentials and the normal fluxes on the edges. The technique employs lowest-order Raviart-Thomas
basis functions to compute a local potential gradient, which is then used to obtain nodal potentials
and from there a global energy-conforming potential. Numerical convergence tests in two dimensions
show that the gradient of the reconstructed potential converges at O(h), outperforming reconstruc-
tions obtained via averaging of cell-centered values and producing similar results compared to a
quadratic reconstruction technique.
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1 Introduction
The cell-centered finite volume method (CCFVM) is the industry standard in computational

fluid dynamics and reservoir engineering simulations. Regardless of the specific application, one
often wishes to estimate numerical errors to employ them as part of adaptive mesh coarsen-
ing/refinement workflows, as this results in considerable computational savings. Estimating errors
using a posteriori techniques typically requires computing the gradient of the primary variable,
i.e., the fluid potential, temperature, concentration, etc. Unfortunately, for lowest-order CCFVM,
since the potential is only constant in each cell, this is not possible, and one must enhance its
regularity to produce at least a linear potential. Depending on the context, this process is referred
to as potential reconstruction or gradient reconstruction.

Several techniques of different complexity and accuracy have been proposed. The reader coming
from the computational fluid dynamics community may be familiar with techniques based on the
Green-Gauss theorem (GG methods) or the least-squares approach (LSQ methods) [7, 10, 13],
whereas the reader coming from the a posteriori error analysis community might recognize the
simple patch-wise average of cell-centered potentials [3] or the more elaborate schemes proposed
by Vohralík [11, 12] and coauthors.

In this contribution, we propose a linear potential reconstruction technique that employs the
available CCFVM flux information but does not require solving an auxiliary problem or performing
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numerical integration. As demonstrated by the numerical tests, the proposed potential reconstruc-
tion technique converges at O(h), resulting in a competitive alternative that can be used as part
of error estimation routines. The rest of the paper is organized as follows: In the following section,
we introduce the model problem and its CCFVM approximation. In Section 3, we introduce the
proposed technique and other well-established alternatives. Finally, in Section 4 we perform the
numerical tests, and in Section 5 we draw our conclusions.

2 Model and Finite Volume Discretization

In this section, we introduce the model problem and its CCFVM discretization. For the sake
of compactness, we limit our exposition and analysis to two dimensions. However, the extension
to three dimensions is straightforward and does not require any special consideration.

2.1 The Model Problem

Let Ω ⊂ R2 be an open and bounded domain with a smooth boundary Γ ⊂ R. The Darcy
problem in strong dual form is given by

∇ · u = f, inΩ, (1a)
u = −K∇p, inΩ, (1b)
p = gΓ, onΓ, (1c)

where u is the Darcy flux, f ∈ L2(Ω) is a source term, K is the symmetric positive-definite 2× 2
permeability matrix4 with diagonal components Kxx and Kyy and off-diagonal components Kxy, p
is the potential and gΓ ∈ H1/2(Γ) is a prescribed Dirichlet function on the boundary Γ. Moreover,
we define g ∈ H1(Ω) as a function satisfying gΓ = g|Γ in the sense of traces.

2.2 Cell-Centered Finite Volume Approximation

Let Th be a shape-regular simplicial partition of the domain Ω, such that Ω = ∪K∈Th
K with

K denoting a two-dimensional simplex, i.e., a triangle. A CCFVM scheme is based on integrating
(1a) locally and then applying the Gauss theorem to obtain [8]

(∇ · u, 1)K = (u · n, 1)∂K =
∑
e∈EK

(u · n|e, 1)e =
∑
e∈EK

(ue, 1)e = (f, 1)K , ∀ K ∈ Th, (2)

where ue is the exact normal flux on the edge e, associated with the set of edges EK of the simplex
K. Here, and in the following, we use (·, ·)S to denote the L2 inner product on the domain S.

The normal fluxes are now related to their neighboring cell-centered potentials ph,K via the
discrete version of (1b)

(ue, 1)e ≈ (uh,e, 1)e =
∑

K∈Fe

TK,e ph,K , ∀ e ∈ EK , ∀ K ∈ Th, (3)

where Fe denotes the set of neighboring cells of the edge e and TK,e are transmissibility coefficients.
The definition of TK,e depends on the CCFVM scheme employed and the type of grid. For this
paper, the precise expression for TK,e is not relevant. The interested reader, however, is referred
to [1] for an excellent exposition.

4We emphasize that the permeability matrix K can be both anisotropic and heterogeneous.
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Equations (2) and (3) allow us to write a system of linear algebraic equations that can be
solved to obtain cell-centered potentials ph,K ∈ P0(K) for all K ∈ Th and (upon post-processing)
face-centered normal fluxes ue ∈ P0(e) in all e ∈ EK for all K ∈ Th. For the numerical examples in
Section 4, we shall employ the Multi-Point Flux Approximation (MPFA-O) scheme, see also [1, 8].

3 Potential Reconstruction

As we have mentioned in the introduction, computing energy norms typically require calculating
the gradients of the approximated potentials. We thus need to enhance the regularity of the
CCFVM potential using some interpolant of the type Gk : P0(Th) → Pk(Th) ∩ H1

0 (Ω) + g, for
some k ∈ N>0, where H1

0 (Ω) is the energy space with vanishing traces on the boundaries and
Pk(Th) : {q ∈ L2(Ω) : q ∈ Pk(K) ∀ K ∈ Th} is the broken space of polynomial functions.

3.1 A Lowest-Order Raviart-Thomas-Based Reconstruction

In the following, we present the steps to obtain the reconstructed potential starting from a
CCFVM solution. To keep the computational cost low, the proposed reconstruction technique
seeks an interpolant G1. We shall refer our scheme to as P1-RT0-BASED.

Step 1: Extension of Normal Fluxes Into the Interior of the Elements

Having available the normal fluxes uh,e on each edge, the first step is to extend them onto
the interior of each K ∈ Th to obtain a local velocity v|K . This can be achieved using lowest-
order Raviart-Thomas basis functions RT0(K) : [P0(K)]

2
+xP0(K). In two dimensions, the vector

v|K ∈ RT0(K) is fully-determined by three constants aK , bK and cK such that

v|K =

(
aKx+ bK
aKy + cK

)
, ∀ K ∈ Th. (4)

For the details, we refer to [2]. We remark that this step should not represent an additional
cost to the a posteriori analysis, since the global Darcy flux v ∈ H(div,Ω) is typically required
independently of the potential reconstruction technique employed.

Step 2: Computation of Potential Gradients

Using Darcy’s law (1b), we can now obtain a vector quantity

r|K = −K−1v|K , ∀ K ∈ Th, (5)

that approximates a local potential gradient. Since the permeability matrix is defined locally in
each K ∈ Th, computing its inverse has a negligible cost.

Step 3: Computation of Nodal Potentials

Let V denote a node (vertex) from the set of nodes VK of K and BK the barycenter of the
cell K. For all interior nodes, we can now compute a nodal potential s̃(V ) by adding the CCFVM
potential to the projected local potential gradient

s̃(V ) = ph,K + [x(V )− x(BK)] · r|K(BK), ∀ V ∈ VK , ∀ K ∈ Th. (6)
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(a) (b) (c) (d)

Figure 1: Triangulations of the unit square employed in the numerical tests. (a) Regular structured.
(b) Irregular structured. (c) Unstructured. (d) Perturbed unstructured. Source: Authors.

Step 4: Application of the Oswald Interpolator

The nodal potentials obtained in Step 3 are in general non-conforming, in the sense that for
two simplices K and K ′ sharing a common node V , the values of s̃(V ) do not necessarily match.
The remedy is to employ the so-called Oswald interpolator [4], which takes the average of s̃(V )
sharing common Lagrangian nodes. We therefore seek for s(V ) such that

s(V ) =

{
1

|PV |
∑

K∈PV
s̃(V ), V is an interior node

gD(V ), V is a boundary node
(7)

where |PV | refers to the cardinality of the set PV and gΓ is assumed to be continuous on Γ.

3.2 Alternative Reconstruction Schemes
Is clear that the construction of Gk is not unique. Here, we present two other well-established

techniques to construct G1 and G2. The first [3] takes the volume-weighted average of cell-centered
potential over node patches, whereas the second [11, 12] solves a local Darcy problem with mean
value potential preservation and then applies the Oswald interpolator.

3.2.1 Reconstruction via Averaging of Cell-Centered Potentials

Let ph ∈ P0(K) be available for all K ∈ Th. Then, a simple way to obtain nodal potential
values is to take the (weighted) average of cell-centered potentials over patches [3]:

s(V ) =


∑

K∈PV
|K| ph,K∑

K∈PV
|K| , V is an interior node

gD(V ), V is a boundary node
(8)

where |K| is the Lebesgue measure of the simplex K, i.e., the area of the triangle. Since this
technique produces unique values at the nodes, the resulting potential is already energy-conforming.
We shall refer to this scheme as P1-CC-AVG.

3.2.2 A Quadratic Potential Reconstruction

As part of a formal primal formulation-based a posteriori error analysis in the context of
mixed finite element methods, Vohralík [11, 12] proposed the following post-processing of the cell-
centered potentials: Let ph,K ∈ P0(K) and vh|K ∈ RT0(K) be available for all K ∈ Th. Then, for
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Figure 2: Convergence analysis for a parabolic potential profile with unit permeability. The grid
types (a), (b), (c), and (d) correspond to those from Figure 1. Source: Authors.

all K ∈ Th, find s̃ ∈ P2(K) such that

−K∇s̃|K = v|K , (9a)
1

|K| (s̃|K , 1)K = ph,K . (9b)

When K is a dense tensor, s̃|K is a full quadratic polynomial in each cell. Furthermore, since
s̃|K ∈ P2(K) results in a globally non-conforming potential, we apply the Oswald interpolator to
obtain s ∈ P2(Th) ∩H1

0 (Ω) + g (c.f., Step 4 from Sec. 3.1). An important point to remark is that
the interpolation must be performed in all Lagrangian nodes (not only in the physical mesh nodes)
since the potential is now quadratic in each element. We shall refer to this scheme as P2-RECON.

4 Numerical Tests
To test the reconstruction techniques P1-RT0-BASED, P1-CC-AVG, and P2-RECON, we shall em-

ploy four triangular grids as shown in Figure 1. For each type of grid, we perform two numerical
convergence tests using the method of manufactured solutions [9]. The first assumes a parabolic
potential profile p(x, y) = x(1 − x)y(1 − y) with unit permeability and the second assumes a
trigonometric potential profile p(x, y) = cos (2πx) cos (2πy) with Kxx = 7.7500, Kyy = 3.2500 and
Kxy = 3.8971 as employed in [6]. Boundary conditions are imposed such that they satisfy the
exact potential on Γ. To measure the errors, we compute the difference between the exact and

reconstructed potential gradients, with the error defined as ε :=
(∑

K∈Th
∥∇p−∇s)∥2K

)1/2

.

For each convergence analysis, we employ seven levels of successively refined mesh sizes h, i.e.,
0.1, 0.05, 0.025, 0.00125, 0.00625, 0.003125, and 0.0015625. The numerical tests are implemented
using the Python library PorePy [5] and are openly available5 for reproduction.

4.1 Analysis of Results
Convergence plots for the first and second set of experiments are shown respectively in Figures

2 and 3. Analyzing the results, we can see that P1-CC-AVG converges only for the case of struc-
5www.github.com/jhabriel/potential_reconstruction.git
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Figure 3: Convergence analysis for a trigonometric potential profile with anisotropy. The grid
types (a), (b), (c), and (d) correspond to those from Figure 1. Source: Authors.

tured regular grids. In the case of unstructured grids, the convergence comes with some accuracy
degradation. Furthermore, for structured irregular and perturbed unstructured grids, the scheme
is, in fact, zero-order convergent. A similar behavior was reported in [7, 10]. Later, in [13], it
was proved that this occurs when the face midpoint of an element does not divide the segment
connecting the centers of its two adjacent cells equally. This results in the reconstructed potential
to converge only at O(h) and consequently its gradient at O(1).

The quadratic reconstruction technique P2-RECON converges at O(h) in all cases, except for the
trigonometric potential from Figure 3 with unstructured and perturbed unstructured grids, where
a mild lost in the convergence rates can be seen at highly refined mesh sizes. This behavior could
be linked to the presence of anisotropy and deserves further investigation.

Finally, the proposed technique P1-RT0-BASED seems to converge at O(h) in almost all scenarios.
Notably, the method seems stable for the case of unstructured grids while sharing similar difficulties
as P2-RECON when the nodes are perturbed.

5 Conclusion
In this article, we have proposed a technique to recover a linear potential from the solutions

obtained with cell-centered finite volume methods. The technique is simple to implement and does
not require numerical integration. Numerical examples carried on four different triangular grids
and for two different manufactured solutions (one including anisotropy) suggest that potential
gradients converge at O(h). Based on our numerical investigations, unless the grid employed is
structured and regular, we do not recommend employing the technique based on averaging cell-
centered potentials.
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