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Abstract. Grouping and overlap functions have been largely applied in the modeling of fuzzy
systems and problems involving decision-making based on fuzzy preference relations due to their
richness in the classes of aggregation functions compared to t-conorms and t-norms. Grouping
functions allow one to measure the amount of evidence favoring two given alternatives in pairwise
comparisons. However, as they are not associative, in the context of n-dimensional problems,
some generalizations of grouping functions are required, like n-dimensional grouping functions and
the more flexible class called general grouping functions (GGF). Since GGF widens the scope of
applications, a novel class of fuzzy implication functions constructed from GGF and fuzzy negations
is provided in this work. We study their main properties, characterizations, construction methods,
and examples, paving the way for their use in modeling more flexible fuzzy systems.
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1 Introduction
Compared to well-known aggregation functions such as t-norms and t-conorms [13], overlap

and grouping functions are richer aggregation functions. They present the self-closeness property
concerning the convex sum and the aggregation by the composition of overlap and/or grouping
functions [10], whereas t-norms and t-conorms do not. Also, the maximum t-conorm is the only
idempotent t-conorm and the unique homogeneous t-conorm. Nevertheless, there are many idem-
potent and homogeneous grouping functions. However, since overlap and grouping functions may
be non-associative, their extension to n-ary functions is not so immediate. They were just applied
in bi-dimensional problems (when only a pair of classes are considered), up to the study seen in
[11], where n-dimensional overlap functions were introduced and applied to fuzzy rule-based clas-
sification systems (FRBCSs). In [12], n-dimensional grouping functions are defined and applied to
quantify the quality of a fuzzy community detection output based on n-dimensional operators.

A more flexible concept in the n-dimensional context was given in [9], where general overlap
functions (GOF) were defined with less restrictive boundary conditions and applied to identify
the matching degree in the fuzzy reasoning method of FRBCSs. Analogously, in [17], we have
the theoretical basis of general grouping functions (GGF), a resource that allows more flexibility
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to n-dimensional grouping functions. They can be interpreted, for example, as the quantity of
evidence in favor of one alternative among multiple ones when performing n-ary comparisons in
multi-criteria decision-making based on n-ary fuzzy heterogeneous, incomplete preference relations.

GOF and GGF definitions pave the way to research properties, related concepts, and extensions
to the interval-valued context [3]. Therefore, one question arises: What would be the role of fuzzy
material implication functions derived from GGF and fuzzy negations?

If-then rules in fuzzy rule-based systems make the process of representing inferential knowledge
very intuitive and, therefore, is a commonly used strategy in several works. It is possible to con-
struct implication-like operators in distinct ways. In the fuzzy logic setting, implication functions
have been deeply investigated in the applied and theoretical fields [5]. Some works on fuzzy impli-
cation functions (FIF, for short) offer less restrictive operators than t-norms and t-conorms, e.g.,
the works using (i) uninorms under some conditions [18]; (ii) copulae [1]; (iii) pseudo-triangular
norms [14]; (iv) semi-copulae [4]; and, (v) aggregation functions [15]. In particular, in this paper,
we study material implication functions derived from GGF and fuzzy negations [6]. We use GGF to
generalize the Boolean implication p → q ≡∼ p∨q, studying their properties and characterizations.

The main objective of the present work is to introduce a new and more flexible class of fuzzy
material implications, namely the (GG,N)-implication functions derived from general grouping
functions GG and fuzzy negations N , studying properties and providing their characterization
(Sect. 3). Moreover, Sect. 2 presents some preliminary concepts, and Sect. 4 has the Conclusion.

2 Preliminaries

In this section, we highlight some relevant concepts used in this work.

Definition 2.1. [7] A function N : [0, 1] → [0, 1] is called fuzzy negation if the following two
conditions hold, ∀x, y ∈ [0, 1]: (N1) N(x) ≤ N(y) if y ≤ x, i.e., N is decreasing, and (N2)
N(0) = 1 and N(1) = 0 (boundary conditions). It is strict if (N3) N is continuous and N(x) >
N(y) whenever y > x. It is strong if (N4) N(N(x)) = x.

Definition 2.2. [5] A binary operator I : [0, 1]2 → [0, 1] is said to be a FIF, if the following
conditions hold, ∀x, y, z ∈ [0, 1]: (I1) If x ≤ z then I(x, y) ≥ I(z, y); (I2) If y ≤ z then I(x, y) ≤
I(x, z); (I3) I(0, y) = 1; (I4) I(x, 1) = 1; (I5) I(1, 0) = 0.

Remark 2.1. In order to obtain an equivalent definition regarding Def. 2.2, one can substitute
conditions (I3) and (I4), respectively, by: (I3*) I(0, 0) = 1 and (I4*) I(1, 1) = 1.

Definition 2.3. [5] Take I : [0, 1]2 → [0, 1] as a FIF. The function NI : [0, 1] → [0, 1], given,
∀x ∈ [0, 1], by NI(x) = I(x, 0), is called the natural negation of I or the negation induced by I.

Definition 2.4. [5] Some properties may be studied for a FIF I : [0, 1]2 → [0, 1], ∀x, y, z ∈ [0, 1]:

(NP) Left neutrality property: I(1, y) = y;

(EP) Exchange principle: I(x, I(y, z)) = I(y, I(x, z));

(LI) Law of importation with a t-norm T : I(T (x, y), z) = I(x, I(y, z));

(CP) Law of contraposition with respect to a fuzzy negation N : I(x, y) = I(N(y), N(x));

(L-CP) Left contraposition law with respect to a fuzzy negation N : I(N(x), y)=I(N(y), x);

(R-CP) Right contraposition law with respect to a fuzzy negation N : I(x,N(y))=I(y,N(x)).

Definition 2.5. [7] A function A : [0, 1]n → [0, 1] is said to be an aggregation function (AF), if,
∀x1, . . . , xn ∈ [0, 1]: (A1) A satisfies: A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1; (A2) A is increasing,
i.e., for each i ∈ {1, . . . , n}, if xi ≤ y then A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn).
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Definition 2.6. [13] Let S : [0, 1]2 → [0, 1] be a binary AF, then S is a triangular conorm
(t-conorm), if, ∀x, y, z ∈ [0, 1]: (S1) Commutativity: S(x, y) = S(y, x); (S2) Associativity:
S(x, S(y, z)) = S(S(x, y), z); (S3) Increasingness: if x ≤ y then S(x, z) ≤ S(y, z); (S4) Neu-
tral element: S(x, 0) = x.

Definition 2.7. [11] A mapping Gn : [0, 1]
n → [0, 1] is an n-dimensional grouping function if,

∀x⃗ = (x1, . . . , xn) ∈ [0, 1]n: (Gn1) Gn is commutative; (Gn2) Gn(x⃗) = 0 iff xi = 0, ∀i = 1, . . . , n;
(Gn3) Gn(x⃗) = 1 iff ∃i ∈ {1, . . . , n} with xi = 1; (Gn4) Gn is increasing; (Gn5) Gn is continuous.

Henceforth, we will refer to binary grouping functions directly as grouping functions [8].

Definition 2.8. [17] A function GG : [0, 1]n → [0, 1] is said to be a GGF if, ∀x⃗ = (x1, . . . , xn) ∈
[0, 1]n: (GG1) GG is commutative; (GG2) If

n∑
i=1

xi = 0, then GG(x⃗) = 0; (GG3) If ∃i ∈

{1, . . . , n} such that xi = 1, then GG(x⃗) = 1; (GG4) GG is increasing; (GG5) GG is continuous.

Definition 2.9. [2] A function Gn : [0, 1]
n → [0, 1] is said to be n-dimensional 0-grouping function

if the condition (Gn2) in Def. 2.7 is replaced by: (Gn2′) If xi = 0, ∀i = 1, . . . , n, then Gn(x⃗) = 0.
Likewise, a function Gn : [0, 1]

n → [0, 1] is said to be an n-dimensional 1-grouping function if the
condition (Gn3) is replaced by: (Gn3′) If there exists i ∈ {1, . . . , n} with xi = 1, then Gn(x⃗) = 1.

Remark 2.2. Observe that non-0-positive bivariate grouping and non-1-positive bivariate grouping
functions were originally called as 0-grouping and 1-grouping functions [16], respectively. Also, if
Gn : [0, 1]

n → [0, 1] is an n-dimensional grouping function, 0-grouping or 1-grouping function, then
Gn is also a GGF.

3 Material Fuzzy Implications Derived from GGF
Dimuro et al. [10] introduced (G,N)-implications, defined from the composition of a grouping

function and a fuzzy negation. Inspired by that, our study replaces the grouping function with a
bivariate GGF to introduce a new class of FIF called (GG,N)-implication function.

Definition 3.1. Take a GGF GG : [0, 1]2 → [0, 1] and let N be a fuzzy negation. The mapping
IGG,N : [0, 1]2 → [0, 1] is defined, ∀x, y ∈ [0, 1], by IGG,N (x, y) = GG(N(x), y).

Proposition 3.1. The function IGG,N : [0, 1]2 → [0, 1] is a FIF, entitled (GG,N)-implication.

Proof. For a GGF GG : [0, 1]2 → [0, 1] and a fuzzy negation N , let us verify if, ∀x, y, z ∈ [0, 1], the function
IGG,N : [0, 1]2 → [0, 1] defined according to Def. 3.1 satisfies the conditions from Def. 2.2:

(I1) Bearing in mind that condition (GG4) holds for GG, then x ≤ y
(N1)⇒ N(x) ≥ N(y) ⇒ GG(N(x), z) ≥

GG(N(y), z). Therefore, IGG,N (x, z) ≥ IGG,N (y, z);

(I2) As (GG4) holds for GG, we have y≤z ⇒ GG(N(x), y)≤GG(N(x), z). So, IGG,N (x, y)≤IGG,N (x, z);

(I3) By (GG3), one has that IGG,N (0, y) = GG(N(0), y)
(N2)
= GG(1, y) = 1;

(I4) By (GG3), we have that IGG,N (x, 1) = GG(N(x), 1) = 1;

(I5) By (GG2), one has that IGG,N (1, 0) = GG(N(1), 0)
(N2)
= GG(0, 0) = 0.

Therefore, IGG,N is a FIF.

The following result ensures that the class of (GG,N)-implication functions, where GG does
not have 0 as a neutral element, does not intersect with the class of (S,N)-implications.

Proposition 3.2. If a GGF GG does not have 0 as neutral element, then IGG,N ̸= IS,Ñ for any
t-conorm S and any fuzzy negations N and Ñ (N and Ñ not being necessarily the same).
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Proof. Given a GGF GG and a fuzzy negation N , suppose that there exists a t-conorm S and a
fuzzy negation Ñ , such that IGG,N (x, y) = IS,Ñ (x, y), ∀x, y ∈ [0, 1]. For x = 1, GG(N(1), y) =

S(Ñ(1), y). Therefore, GG(0, y) = S(0, y) = y,∀y ∈ [0, 1], contradiction.

Proposition 3.3. Let GG and N be a GGF and a fuzzy negation, respectively. Then,

(i) If 0 is the neutral element of GG, then NI
GG,N

= N ;
(ii) If N is strict and NI

GG,N
= N , then 0 is the neutral element of GG.

Proof. (i) Once 0 is the neutral element of GG, then, ∀x ∈ [0, 1], it holds that NI
GG,N

(x) =

IGG,N (x, 0) = GG(N(x), 0) = N(x). (ii) Since N is strict, then we have that, ∀x ∈ [0, 1], it holds
that GG(x, 0) = GG(N(N−1(x)), 0) = IGG,N (N−1(x), 0) = NI

GG,N
(N−1(x)). By hypothesis, take

NI
GG,N

= N . Thus, GG(x, 0) = N(N−1(x)) = x, ∀x ∈ [0, 1]. So, 0 is the GG neutral element.

Note that there are non-strict fuzzy negations N that satisfy NI
GG,N

= N , but GG has no
neutral element, i.e., the converse of Prop. 3.3(i) is not always true.

Proposition 3.4. Let GG : [0, 1]2 → [0, 1] be a GGF, N1, N2 : [0, 1] → [0, 1] be fuzzy negations and
IGG,N1

, IGG,N2
: [0, 1]2 → [0, 1] be (GG,N)-implication functions. Then it holds that:

(i) If N1 ≤ N2 then IGG,N1 ≤ IGG,N2 ;
(ii) If GG has a neutral element n and IGG,N1

≤ IGG,N2
, then N1 ≤ N2.

Proof. (i) Since N1 ≤ N2, by (GG4) we have that GG(N1(x), y) ≤ GG(N2(x), y) ∀x, y ∈ [0, 1], i.e.,
IGG,N1 ≤ IGG,N2 . (ii) Since IGG,N1 ≤ IGG,N2 , so, in particular, GG(N1(x), n) ≤ GG(N2(x), n),
∀x ∈ [0, 1]. Therefore, N1(x) ≤ N2(x) ∀x ∈ [0, 1], once n is a neutral element of GG.

Proposition 3.5. Let GG1, GG2 : [0, 1]
2 → [0, 1] be GGF, N1, N2 : [0, 1] → [0, 1] be fuzzy negations

and IGG1,N1
, IGG2,N2

: [0, 1]2 → [0, 1] be (GG,N)-implication functions. If IGG1,N1
≤ IGG2,N2

then:

(i) If a1 ≤ a2, where ai is a neutral element of GGi, for i ∈ {1, 2}, then N1 ≤ N2;
(ii) If N1 = N2 is continuous, then GG1 ≤ GG2.

Proof. (i) Considering IGG1,N1
≤ IGG2,N2

and a1 ≤ a2, thus GG1(N1(x), a1) ≤ GG2(N2(x), a2),
∀x ∈ [0, 1]. So, since ai is a neutral element of GGi, for i ∈ {1, 2}, N1(x) ≤ N2(x), ∀x ∈ [0, 1]. (ii)
Since N1 = N2 = N is continuous, for each x ∈ [0, 1] there is x̃ ∈ [0, 1] such that N(x̃) = x. So,
GG1(x, y) = GG1(N(x̃), y) ≤ GG2(N(x̃), y) = GG2(x, y), ∀x, y ∈ [0, 1]. Thus, GG1≤GG2.

Proposition 3.6. Let GG : [0, 1]2 → [0, 1] be a GGF and N be a fuzzy negation. Then, y ≤
GG(0, y) iff y ≤ IGG,N (x, y), ∀x, y ∈ [0, 1], where IGG,N : [0, 1]2 → [0, 1] is a (GG,N)-implication.

Proof. If y ≤ GG(0, y), then, since 0 ≤ N(x), ∀x ∈ [0, 1], and (GG4), we have that y ≤ GG(0, y) ≤
GG(N(x), y) = IGG,N (x, y). Conversely, if y ≤ IGG,N (x, y), ∀x ∈ [0, 1], then, in particular, for
x = 1, y ≤ GG(N(1), y) = GG(0, y).

Corollary 3.1. Let GG : [0, 1]2 → [0, 1] be a GGF. Take N as a fuzzy negation and IGG,N : [0, 1]2 →
[0, 1] as a (GG,N)-implication. If 0 is GG neutral element, then y ≤ IGG,N (x, y), ∀x, y ∈ [0, 1].

Lemma 3.1. Let GG be a GGF. If GG is associative, then 0 is the neutral element of GG.

Proof. Since GG is associative, ∀x, y, z ∈ [0, 1], one has that GG(x,GG(y, z)) = GG(GG(x, y), z).
In particular, for x = y = 0, and by (GG2), GG(0, GG(0, z)) = GG(0, z), ∀z ∈ [0, 1]. Now, given
any y ∈ [0, 1], as GG is continuous, there exists z ∈ [0, 1], such that GG(0, z) = y. Thus, one has
that GG(0, y) = GG(0, GG(0, z)) = GG(0, z) = y. Therefore, 0 is the neutral element of GG.
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Proposition 3.7. Let GG be a GGF. If GG is associative, then GG is a t-conorm.

Proof. It is immediate from (GG1) and (GG4), GG associativity and Lemma 3.1.

Corollary 3.2. Let GG be a GGF. If GG is associative, then IGG,N is an (S,N)-implication.

The next propositions study under which conditions, (GG,N)-implications satisfy some of the
properties of implication functions provided in Def. 2.4.

Proposition 3.8. Let IGG,N : [0, 1]2 → [0, 1] be a (GG,N)-implication function, so:

(i) IGG,N satisfies (NP) if and only if 0 is the neutral element of GG.
(ii) If GG is associative, then IGG,N satisfies (EP). Furthermore, if N is strict and IGG,N satisfies

(EP), then GG is associative.

Proof. (i) ∀y ∈ [0, 1], one has that IGG,N (1, y) = y ⇔ y = GG(N(1), y)
(N2)
= GG(0, y). (ii) By

Proposition 3.7, GG is a t-conorm. So, the result follows straight from Proposition 2.4.3(i) in [5].
Now, consider that N is strict and IGG,N satisfies (EP). So, ∀x, y, z ∈ [0, 1], we have that:

GG(x,GG(y, z))
(GG1)
= GG(x,GG(z, y)) = GG(N(N−1(x)), GG(N(N−1(z)), y))

= IGG,N (N−1(x), IGG,N (N−1(z), y))
(EP)
= IGG,N (N−1(z), IGG,N (N−1(x), y))

= GG(N(N−1(z)), GG(N(N−1(x)), y))=GG(z,GG(x, y))
(GG1)
= GG(GG(x, y), z).(1)

Therefore, GG is associative.

Proposition 3.9. Let IGG,N : [0, 1]2 → [0, 1] be a (GG,N)-implication function. Then:

(i) IGG,N satisfies the R-CP(N) property.
(ii) If N is strict, then IGG,N satisfies L-CP(N−1).
(iii) If IGG,N satisfies L-CP(N) and 0 is the neutral element of GG, then N is strong.
(iv) If N is strong, then IGG,N satisfies CP(N).
(v) If IGG,N satisfies CP(N) and 0 is the neutral element of GG, then N is strong.

Proof. (i) Assuming (GG1) holds, ∀x, y ∈ [0, 1], IGG,N (x,N(y)) =GG(N(x), N(y)) = GG(N(y), N(x)) =
IGG,N (y,N(x)). So, IGG,N holds R-CP(N). (ii) Since N is strict, by (GG1), IGG,N (N−1(x), y) =

GG(N(N−1(x)), y) = GG(x, y)
(GG1)
= GG(y, x) = GG(N(N−1(y)), x) = IGG,N (N−1(y), x), ∀x, y ∈ [0, 1].

Then, IGG,N satisfies L-CP(N−1). (iii) Since IGG,N holds L-CP(N), GG(N(N(x)), y)=GG(N(N(y)), x),

∀x, y ∈ [0, 1]. Particularly, for y = 0, GG(N(N(x)), 0)=GG(N(N(0)), x)
(N2)
= GG(0, x). So, since 0 is the

neutral element of GG, one concludes N(N(x))=x, ∀x ∈ [0, 1]. Hence, N is strong. (iv) Since N is strong,
IGG,N (N(y), N(x)) = GG(N(N(y)), N(x)) = GG(y, N(x)), ∀x, y ∈ [0, 1]. So, by (GG1), we have that
IGG,N (N(y), N(x))=GG(N(x), y)=IGG,N (x, y). So, IGG,N holds CP(N). (v) Since IGG,N satisfies CP(N),
GG(N(N(y)), N(x)) =GG(N(x), y), ∀x, y ∈ [0, 1]. And, for x=1, by (N2), GG(N(N(y)), 0) =GG(0, y).
So, since 0 is the neutral element of GG, then N(N(y))=y, ∀y ∈ [0, 1]. Therefore, N is strong.

Lemma 3.2. Let I : [0, 1]2 → [0, 1] be a continuous FIF. When NI : [0, 1] → [0, 1] is a strict fuzzy
negation and I satisfies L-CP(N−1

I ), then GGI(x, y) = I(N−1
I (x), y) is a GGF.

Proof. GGI must satisfy all conditions from Def. 2.8, ∀x, y, z ∈ [0, 1]. (GG1) As I satisfies L-CP(N−1
I ),

GGI(x, y)=I(N−1
I (x), y)=I(N−1

I (y), x) = GGI(y, x); (GG2) If x = y = 0, then GGI(0, 0)=I(N−1
I (0), 0)=

I(1, 0)
(I5)
= 0; (GG3) If x=1, then GGI(1, y)=I(N−1

I (1), y)=I(0, y)
(I3)
= 1. On the other hand, if y = 1, then

GGI(x, 1)=I(N−1
I (x), 1)

(I4)
= 1; (GG4) x ≤ y

(N1)⇒ N−1
I (y) ≤ N−1

I (x)
(I1)⇒ I(N−1

I (x), z) ≤ I(N−1
I (y), z) ⇒

GGI(x, z) ≤ GGI(y, z); (GG5) It follows from the continuity of I and N−1
I . So, GGI is a GGF.
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Lemma 3.2 aids to state the next result characterizing (GG,N)-implication functions.

Theorem 3.1. For a function I : [0, 1]2 → [0, 1], the following statements are equivalent:

(i) I=IGG,N is a (GG,N)-implication function, N being strict and 0, the neutral element;
(ii) I is continuous and satisfies (I1), (NP) and L-CP(N−1

I ), where NI is strict.

Proof. (i) ⇒ (ii) Let I(x, y) = GG(N(x), y) where N is strict and 0 is neutral element of GG. So,
by Prop. 3.1, I satisfies (I1). From the continuity of GG and N , I is then continuous. Now, since
0 is a neutral element of GG, ∀x ∈ [0, 1], one has that NI(x) = I(x, 0) = GG(N(x), 0) = N(x).
Thus, NI is strict, since N is strict. Finally, by Props. 3.8(i) and 3.9(ii), IGG,N satisfies (NP) and L-
CP(N−1

I ), respectively. (ii) ⇒ (i) For y ≤ z, we have, by condition (N2), that N−1
I (z) ≤ N−1

I (y).
So, since I satisfies (I1) and L-CP(N−1

I ), ∀x ∈ [0, 1], one has that I(x, y) = I(N−1
I (NI(x)), y)

L-CP
=

I(N−1
I (y), NI(x))

(I1)
≤ I(N−1

I (z), NI(x))
L-CP
= I(N−1

I (NI(x)), z) = I(x, z). Hence, I satisfies (I2). Now,

take I(0, 0) = I(N−1
I (NI(0)), 0)

L-CP
= I(N−1

I (0), NI(0)) = I(1, 1)
(NP)
= 1. And I(1, 0)

(NP)
= 0. Thus, I

satisfies (I3*), (I4*) and (I5), and I is a FIF. Also, by Lemma 3.2, GGI(x, y) = I(N−1
I (x), y) is a GGF.

So, IGGI ,NI (x, y) = GGI(NI(x), y) = I(N−1
I (NI(x)), y) = I(x, y), ∀x, y ∈ [0, 1]. Hence, I is a (GG,N)-

implication function with N = NI being strict. So, by Prop. 3.3, 0 is a neutral element of GGI .

Finally, the next results follow immediately from Proposition 3.7 and Prop. 7.3.2 in [5].

Lemma 3.3. Let GG : [0, 1]2 → [0, 1] be a GGF and N be a strict fuzzy negation. If GG is
associative, then it holds that T (x, y) = N−1(GG(N(x), N(y))) is a t-norm.

Proposition 3.10. Take a GGF GG : [0, 1]2 → [0, 1], and let N be a strict fuzzy negation and
IGG,N : [0, 1]2 → [0, 1] be a (GG,N)-implication function. If GG is associative, then, IGG,N satis-
fies (LI) with respect to a t-norm T if and only if T (x, y) = N−1(GG(N(x), N(y))).

Proof. As GG is associative, by Prop. 3.7, GG is a t-conorm. So, it follows from Prop. 7.3.2 [5].
considering T (x, y) = N−1(GG(N(x), N(y))), by the Lemma 3.3, T (x, y) = N−1(GG(N(x), N(y)))
is a t-norm. So, IGG,N (T (x, y), z) = GG(N(T (x, y)), z) = GG(N(N−1(GG(N(x), N(y)))), z) =
GG(GG(N(x), N(y)), z), now, by associativity of GG, IGG,N (T (x, y), z) = GG(N(x), GG(N(y), z))
= IGG,N (x, IGG,N (y, z)). Therefore, IGG,N satisfies (LI) with respect to t-norm T . Conversely, if
IGG,N satisfies (LI) with respect to a t-norm T , then GG(N(T (x, y)), z) = GG(N(x), GG(N(y), z)),
for all x, y, z ∈ [0, 1]. In particular, for z = 0, by associativity of GG, GG(N(T (x, y)), 0) =
GG(N(x), GG(N(y), 0)) = GG(GG(N(x), N(y)), 0). Now, since 0 is the neutral element of GG,
N(T(x,y)) = GG(N(x), N(y)). Therefore, T (x, y) = N−1(GG(N(x), N(y))), since N is strict.

4 Conclusions
In this work, considering the contributions of GGF to several application areas, we focused on

more flexible definitions, introducing a new and less restrictive class of fuzzy material implications,
namely the (GG,N)-implication functions derived from GGF and fuzzy negations. Moreover,
we studied several properties and provided their characterization. Ongoing work considers other
implication functions derived from GOF and GGF, namely, the ones based on the residual, the
quantum logic, and the Dishkant FIF and their intersections. Further work is also concerned with
applications like (i) multi-criteria decision-making based on n-ary heterogeneous incomplete fuzzy
preference relations, and (ii) fuzzy data stream clustering, which uses fuzzy dispersion and fuzzy
similarity/dissimilarity obtained by the fuzzy material implications developed in this current work.
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