Trabalho apresentado no XLIII CNMAC, Centro de Convenções do Armação Resort - Porto de Galinhas - PE, 2024

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Modelo Epidemiológico SEIR com Inclusão de Estratégias não Farmacológicas para Contenção de uma Epidemia

Davi V. R. de Oliveira¹, João Frederico da Costa A. Meyer² IMECC, UNICAMP, Campinas, SP Graciele P. Silveira³ DFQM, UFSCar, Sorocaba, SP

Resumo. Este artigo explora um modelo epidemiológico SEIR (Suscetível-Exposto-Infectado-Recuperado) ampliado para avaliar o impacto de estratégias não farmacológicas, como distanciamento social e uso de máscaras, na contenção de uma epidemia. Adotando uma abordagem inovadora, o modelo divide a população em subgrupos com base na adesão às medidas de mitigação: aqueles que adotam (S_2 , E_2 , I_2) e aqueles que não adotam (S_1 , E_1 , I_1). Um estudo analítico, incluindo o cálculo do número básico de reprodução e a análise de estabilidade, foi conduzida para entender a dinâmica subjacente da transmissão da doença. As simulações numéricas foram realizadas utilizando o software MATLAB, com diferentes cenários de transmissão com base nas condições iniciais das subpopulações. A modelagem revelou que subpopulações que não seguem medidas não farmacológicas experimentam um pico mais alto e precoce de infecções, ilustrando a eficácia das intervenções na desaceleração da disseminação da doença. Os resultados podem fornecer uma evidência da importância das estratégias não farmacológicas para a desaceleração da disseminação da doença.

Palavras-chave. Modelagem Epidemiológica, Estratégias Não Farmacológicas, Distanciamento Social, Controle de Epidemias, SEIR Modificado

1 Introdução

A pandemia de COVID-19 desencadeou um interesse renovado na modelagem epidemiológica com a intenção de prever e controlar a propagação de doenças infecciosas. O modelo SEIR (Suscetível-Exposto-Infectado-Recuperado) tem sido uma alternativa nesse contexto, fornecendo insights valiosos sobre a dinâmica de transmissão da doença e orientando a tomada de decisões em saúde pública. No entanto, a inclusão de estratégias não farmacológicas, como o distanciamento social e o uso de máscaras, pode desempenhar um papel crucial na contenção de epidemias.

Estudos recentes, como o de Kucharski et al.[5], demonstraram que a combinação de medidas de saúde pública com o modelo SEIR pode ser altamente eficaz na redução da transmissão do vírus. Outros estudos, como o de Flaxman et al.[4], destacaram a importância do distanciamento social e do uso de máscaras na redução da propagação da COVID-19. Este artigo explora como essas estratégias podem ser integradas ao modelo SEIR com o intuito de melhorar a previsão e controle de epidemias, com foco especial na pandemia de COVID-19.

 $^{^{1}\}mathrm{d}264876@\mathrm{dac.unicamp.br}$

²jmeyer@unicamp.br

³graciele@ufscar.br

2 Formulação do Modelo

Neste modelo, a população total (N) é dividida em categorias de suscetíveis (S), expostos (E), infectados (I) e recuperados (R), cada uma com subgrupos que aderem ou não a medidas de prevenção, como distanciamento social, entre outras estratégias. Assume-se que a taxa de nascimento é igual à taxa de mortalidade, resultando em um crescimento populacional nulo.

As categorias de suscetíveis, expostos e infectados são divididas em dois subgrupos. Há dois canais principais no modelo proposto, ilustrados na Figura 2. O primeiro canal segue a sequência $S_1 \rightarrow E_1 \rightarrow I_1 \rightarrow R$, para os que não seguem medidas de prevenção. O segundo canal descreve $S_2 \rightarrow E_2 \rightarrow I_2 \rightarrow R$, para os que aderem a tais medidas. Esta configuração é uma variante do SEIR com a população dividida em dois grupos comportamentais inter-relacionados durante uma epidemia. A dinâmica da transmissão da doença é representada pelo fluxograma da Figura 1.

Figura 1: Fluxograma com a dinãmica da doença. Fonte: Autor.

Os expostos são indivíduos que contraíram a doença, mas ainda não a transmitiram. Os infectados transmitem a doença ao entrar em contato com os suscetíveis, e os recuperados possuem imunidade temporária. As interações entre os grupos são representadas por taxas de transmissão β_{ij} e δ_{ij} , onde *i* e *j* indicam os grupos envolvidos. Esses parâmetros variam de 0 a 1, refletindo diferentes níveis de eficiência na transmissão do vírus. Os valores extremos de 0 ou 1 representariam a ausência total ou certeza de transmissão, respectivamente, o que é altamente improvável.

Além disso, os infectados que seguem ou não as medidas de prevenção podem se recuperar a uma taxa $\gamma_1 \in \gamma_2$, respectivamente, evoluindo para o compartimento de recuperados ou removidos. Os indivíduos recuperados apresentam imunidade temporária e após o tempo $\frac{1}{\alpha}$ retornam ao compartimento de suscetíveis a uma taxa α , com uma proporção $\rho \in (1-\rho)$ para os compartimentos

de suscetíveis praticantes e não praticantes das medidas de prevenção, respectivamente. Baseandose nas suposições descritas anteriormente, a dinâmica do modelo proposto pela Figura 1 pode ser então descrita pelo seguinte sistema de equações diferenciais ordinárias:

$$\frac{dS_1}{dt} = -\frac{S_1(\beta_{11}I_1 + \beta_{12}I_2)}{N} + \rho\alpha R$$

$$\frac{dE_1}{dt} = \frac{S_1(\beta_{11}I_1 + \beta_{12}I_2)}{N} - \theta_1 E_1$$

$$\frac{dI_1}{dt} = \theta_1 E_1 - \gamma_1 I_1$$

$$\frac{dS_2}{dt} = -\frac{S_2(\delta_{21}I_1 + \delta_{22}I_2)}{N} + (1 - \rho)\alpha R$$

$$\frac{dE_2}{dt} = \frac{S_2(\delta_{21}I_1 + \delta_{22}I_2)}{N} - \theta_2 E_2$$

$$\frac{dI_2}{dt} = \theta_2 E_2 - \gamma_2 I_2$$

$$\frac{dR}{dt} = \gamma_1 I_1 + \gamma_2 I_2 - \alpha R.$$
(1)

onde o tamanho da população N é constante, N = $S_1 + E_1 + I_1 + S_2 + E_2 + I_2 + R$ e $S_10 = S_1(0), E_10 = E_1(0), I_10 = I_1(0), S_20 = S_2(0), E_20 = E_2(0), I_20 = I_2(0), R_0 = R(0)$ são as condições iniciais do sistema (1).

Os parâmetros do modelo SEIR incluem $\beta_{11} \in \beta_{12}$, que são as taxas de transmissão por contato de suscetíveis sem o uso de estratégias não farmacológicas com os infectados $I_1 \in I_2$, respectivamente. Os parâmetros $\delta_{21} \in \delta_{22}$ representam as taxas de transmissão por contato de suscetíveis que adotam estratégias não farmacológicas com os infectados $I_1 \in I_2$, respectivamente. O parâmetro ρ é a probabilidade do recuperado retornar ao S_1 , enquanto $(1 - \rho)$ é a probabilidade do recuperado retornar ao compartimento S_2 . O parâmetro α é a taxa de imunidade temporária, $\theta_1 \in \theta_2$ são as taxas de transição de expostos para infectados que não seguem medidas de prevenção e para os que seguem essas medidas, respectivamente, e γ_1 , γ_2 são as taxas de recuperação dos infectados.

O número reprodutivo básico, R_0 , é a média de novas infecções secundárias causadas por um único indivíduo infectado, em uma população totalmente suscetível. Ele reflete a contagiabilidade de uma doença e sua capacidade de se espalhar em uma população sem imunidade. Se R_0 for maior que 1, há potencial para epidemia, pois cada infectado pode transmitir para mais de uma pessoa. Se R_0 for menor que 1, a doença não deve se espalhar de forma sustentada. O método da matriz da próxima geração é utilizado para calcular R_0 e requer o equilíbrio livre da doença, onde não há infectados. Esse método é detalhado em [6]. Para tanto, preciamos conhecer o equilibrio livre da doença do modelo, disease free equilibrium (DFE), descrito da forma seguinte:

$$E_0 = (\xi N, 0, 0, (1 - \xi)N, 0, 0, 0), \quad \text{com } S_1 + S_2 = N.$$
(2)

Fazendo $\beta_{11} = \beta_{12} = \beta$ e $\delta_{21} = \delta_{22} = \delta$ e de acordo com [2] temos:

$$\mathcal{R}_0 = \left(\begin{array}{c} \frac{\xi\beta}{\gamma_1} + \frac{(1-\xi)\delta}{\gamma_2} \end{array}\right). \tag{3}$$

Observamos que o R_0 depende das taxas de infecção β , δ e das populações presentes nos compartimentos de suscetíveis sem distanciamento social e de suscetíveis com distanciameto social.

O equilíbrio livre da doença acontece quando $I_1 = I_2 = 0$, ou seja, não há infecção pela doença e toda a população é suscetível no ponto de equilíbrio $E_0 = (\xi, 0, 0, (1 - \xi), 0, 0, 0)$.

A estabilidade local do modelo ilustrado na Figura 1, é analisada usando a matriz jacobiana obtida do sistema (1) e avaliada no ponto de equilíbrio livre de doença E_0 . Fazendo $det[J(\bar{E}_0) - \lambda I] = 0$, encontramos o polinômio característico da matriz jacobiana $J(E_0)$, dado por:

$$P(\lambda) = (-\alpha \rho - \lambda) \left[(-\gamma_2 - \lambda)(-\theta_1 - \lambda) \left(-\beta_1 \theta_1 \xi + \gamma_1 \theta_1 + \gamma_1 \lambda + \theta_1 \lambda + \lambda^2 \right) - \theta_1 \left(-\gamma_1 \delta_1 \theta_1 \xi + \gamma_1 \delta_1 \theta_1 - \gamma_1 \delta_1 \lambda \xi + \gamma_1 \delta_1 \lambda - \delta_1 \theta_1 \lambda \xi + \delta_1 \theta_1 \lambda + \delta_1 \lambda^2 (-\xi) + \delta_1 \lambda^2 \right) \right].$$

E os autovalores são $\lambda_1 = -\alpha\rho$, $\lambda_2 = -\theta_1\rho$, e as soluções do polinômio característico $\lambda^3 + a_1\lambda^2 + a_2\lambda + a_3 = 0$ onde:

$$a_{1} = \gamma_{1} + \gamma_{2} + \theta_{1},$$

$$a_{2} = -\beta_{1}\theta_{1}\xi + \gamma_{2}\theta_{1} + \gamma_{1}\theta_{1} + \gamma_{1}\gamma_{2} + \delta_{1}\theta_{1}\xi - \delta_{1}\theta_{1},$$

$$a_{3} = -\beta_{1}\gamma_{2}\theta_{1}\xi + \gamma_{1}\delta_{1}\theta_{1}\xi - \gamma_{1}\delta_{1}\theta_{1} + \gamma_{1}\gamma_{2}\theta_{1}.$$

Utilizando o número básico de reprodução R_0 , podemos expressar a_3 em função de (3), de modo que $a_3 = \theta_1 \gamma_1 \gamma_2 (1 - R_0)$ e analisar a estabilidade usando os critérios de Routh-Hurwitz [3] para k = 3, que exigem $a_1 > 0$, $a_3 > 0$ e $a_1 a_2 > a_3$. Tem-se que $a_1 > 0$, uma vez que todos os parâmetros do modelo são positivos, e $a_3 > 0$ se e somente se $R_0 < 1$. Para demonstrar que $a_1 a_2 > a_3$, precisamos mostrar que $a_1 a_2 - a_3 > 0$, o que leva a $(\gamma_1 + \gamma_2 + \theta_1)(-\beta_1\theta_1\xi + \gamma_2\theta_1 + \gamma_1\theta_1 + \gamma_1\gamma_2 + \delta_1\theta_1\xi - \delta_1\theta_1) - \theta_1\gamma_1\gamma_2(1 - R_0) > 0$. Portanto, se $R_0 < 1$, então $a_3 > 0$, e como $a_1 > 0$ e $a_1 a_2 > a_3$ nas condições dadas em [**Leah**], podemos concluir que o ponto de equilíbrio E(0) é local e assintoticamente estável, enquanto se $R_0 > 1$, o ponto de equilíbrio E(0) é instável.

3 Simulações Numéricas

Para as simulações numéricas do modelo, utilizamos o software MATLAB, com o pacote ODE (Ordinary Differential Equations) para resolver numericamente o sistema de equações diferenciais e exploramos a dinâmica de propagação de uma doença infecciosa em uma população dividida em duas subpopulações distintas, $S_1 \in S_2$, com diferentes níveis de suscetibilidade à infecção. As taxas de transmissão da doença, $\beta \in \delta$, são ajustadas com base nas condições iniciais de $S_1 \in S_2$.

As simulações numéricas mostram o impacto das variações nas condições iniciais das subpopulações $S_1 \in S_2$ na evolução temporal das populações totais de $S, E, I \in R$. Para isso, realizamos uma série de simulações com diferentes proporções iniciais de indivíduos suscetíveis nas subpopulações $S_1 \in S_2$, mantendo constante o tamanho total da população.

Figura 2: Comparação da dinâmica do modelo para 4 condições iniciais diferentes $S_1 = 0.9$ e $S_2 = 0.1$, $S_1 = 0.7$ e $S_2 = 0.3$, $S_1 = 0.5$ e $S_2 = 0.5$ e $S_1 = 0.3$ e $S_2 = 0.7$, respectivamente da esquerda para a direita. E os parâmetros para todas as condições inicias, $\beta = 0.65$ e $\delta = 0.15$ as taxas contágio de S_1 e S_2 com as classes infectadas, $\theta_1 = \theta_2 = 2.174 \times 10^{-1} por dia^{-1}$ a taxa de transição de expostos para infectados, $\gamma_1 = 1.25 \times 10^{-1} por dia^{-1}$ e $\gamma_2 = 1.538 \times 10^{-1} por dia^{-1}$ as taxas de recuperação dos infectados e $\alpha = 6.667 \times 10^{-3} por dia^{-1}$ [1] a taxa de perda de imunidade. Fonte: Autor.

A Figura 2 mostra quatro diferentes cenários de uma simulação epidêmica, com ênfase no impacto das estratégias não farmacológicas de mitigação da doença, como o distanciamento social. Cada gráfico representa a dinâmica de uma população dividida em proporções variáveis de indivíduos que não seguem (S_1) e que seguem (S_2) essas estratégias (principalmente distanciamento social) desde o início da epidemia.

No gráfico (a), a condição inicial apresenta uma maior proporção da população não adotando estratégias não farmacológicas $S_1 = 0.9$ em comparação com aqueles que as adotam $S_2 = 0.1$. Observamos que a curva de indivíduos suscetíveis $S = S_1 + S_2$ rapidamente diminui, enquanto a de expostos $E = E_1 + E_2$ e infectados $I = I_1 + I_2$ tem um pico acentuado e precoce, sugerindo uma rápida disseminação da doença entre aqueles sem precauções. A curva de recuperados R sobe conforme a população ganha imunidade após a infecção.

Nos gráficos (b), (c) e (d), a proporção inicial da população que adota estratégias de mitigação aumenta $S_2 = 0.3$, 0.5, 0.7, enquanto a proporção que não as adota diminui $S_1 = 0.7$, 0.5, 0.3. Notamos uma tendência de retardamento no pico da curva dos infectados e uma menor altura desse pico, indicando uma propagação mais lenta e controlada da doença quando mais pessoas praticam o distanciamento social.

No gráfico (c) com $S_1 = S_2 = 0.5$, a população está equitativamente dividida entre aqueles que seguem e não seguem estratégias não farmacológicas. Esse cenário ainda resulta em um pico

 $\mathbf{5}$

substancial de infectados, mas menos acentuado que nos gráficos (a) e (b), onde a adesão a tais estratégias é menor.

No gráfico (d), a maior parte da população adere ao distanciamento social $S_2 = 0.7$. Aqui, o pico de infectados é ainda mais retardado e achatado, refletindo a eficácia das estratégias de mitigação na desaceleração da transmissão do vírus.

Em resumo, a Figura 2 ilustra como um aumento na adesão a estratégias não farmacológicas, pode eventualmente achatar a curva epidemiológica, reduzindo o número de infectados simultâneos.

Figura 3: Comparação dos casos ativos da doença para 8 condições iniciais diferentes da população de Suscetíveis. E os parâmetros para todas as condições inicias, $\beta = 0.65$ e $\delta = 0.15$ as taxas contágio de S_1 e S_2 com as classes infectadas, $\theta_1 = \theta_2 = 2.174 \times 10^{-1} por dia^{-1}$ a taxa de transição de expostos para infectados, $\gamma_1 = 1.25 \times 10^{-1} por dia^{-1}$ e $\gamma_2 = 1.538 \times 10^{-1} por dia^{-1}$ as taxas de recuperação dos infectados e $\alpha = 6.667 \times 10^{-3} por dia^{-1}$ [1] a taxa de perda de imunidade. Fonte: Autor.

A Figura 3 ilustra a evolução da porcentagem da população infectada (I) ao longo do tempo em diferentes cenários iniciais, que refletem o cumprimento das estratégias não farmacológicas como o distanciamento social. As curvas representam a dinâmica de infecção com base nas condições iniciais das populações S_1 (que não usam estratégias não farmacológicas) e S_2 (que usam estratégias não farmacológicas).

Podemos observar que cenários com uma maior porcentagem inicial de S_1 (menos adesão ao distanciamento social) resultam em picos de infecção mais pronunciados e antecipados. Isso indica uma transmissão mais rápida da doença, uma vez que há mais indivíduos suscetíveis em contato uns com os outros, facilitando a propagação do patógeno.

Por outro lado, à medida que a proporção inicial de S_2 aumenta (indicando maior adesão ao distanciamento social), o pico de infectados torna-se atrasado e achatado. Isso sugere que medidas não farmacológicas sendo aplicadas diminuem a taxa de transmissão da doença.

A Figura 3 oferece uma representação visual clara da importância das estratégias de mitigação na contenção de epidemias. Destaca que o comportamento preventivo adotado pela população pode ter um impacto significativo na redução da velocidade e do alcance da propagação de uma doença infecciosa.

4 Considerações Finais

No presente trabalho, apresentamos um modelo que considera uma população dividida em duas subpopulações, $S_1 \in S_2$, com diferentes níveis de suscetibilidade à infecção. Isso é refletido nos parâmetros que representam as taxas de transmissão da doença dentro de cada subpopulação. A análise das dinâmicas de S (população suscetível total), E (população exposta total), I (população infectada total) e R (população recuperada total) indica como a variação das condições iniciais de $S_1 \in S_2$ influencia a propagação da doença ao longo do tempo.

Os resultados das simulações sugerem que, à medida que a proporção inicial de indivíduos suscetíveis na subpopulação S_1 aumenta (e, consequentemente, diminui na subpopulação S_2), observa-se um aumento no pico da população infectada total (I). Isso sugere que a subpopulação S_1 tem um papel mais significativo na propagação da doença, possivelmente devido a uma maior taxa de contato ou a uma maior suscetibilidade à infecção.

Em conclusão, este estudo destaca a importância de considerar a heterogeneidade da população na modelagem da dinâmica de doenças infecciosas. A compreensão das interações entre diferentes subpopulações e a implementação de estratégias de intervenção direcionadas podem ser fundamentais para o controle eficaz de surtos epidêmicos. O modelo proposto oferece uma estrutura valiosa para investigar o impacto de diferentes cenários e condições iniciais na propagação de doenças.

Referências

- S. Choi e M. Ki. "Estimating the reproductive number and the outbreak size of COVID-19 in Korea". Em: Epidemiology and Health 42 (2020), e2020011.
- [2] O. Diekmann, J. A. P. Heesterbeek e M. G. Roberts. "The construction of next-generation matrices for compartmental epidemic models". Em: Journal of the Royal Society Interface 7.47 (2010), pp. 873–885. DOI: 10.1098/rsif.2009.0386.
- [3] L. Edelstein-Keshet. Mathematical Models in Biology. SIAM edition. Classics in Applied Mathematics. Philadelphia, PA: Society for Industrial e Applied Mathematics (SIAM), 2005. ISBN: 0-89871-554-7.
- [4] S. Flaxman, S. Mishra, A. Gandy, H. J. T. Unwin, T. A. Mellan, H. Coupland, C. Whittaker, H. Zhu, T. Berah, J. W. Eaton et al. "Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe". Em: Nature 584.7820 (2020), pp. 257–261.
- [5] A. J. Kucharski, P. Klepac, A. J. Conlan, S. M. Kissler, M. L. Tang, H. Fry, J. R. Gog e W. J. Edmunds. "Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study". Em: The Lancet Infectious Diseases 20.10 (2020), pp. 1151–1160.
- [6] P. Van den Driessche e J. Watmough. "Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission". Em: Mathematical Biosciences 180.1-2 (2002), pp. 29–48.