Trabalho apresentado no XLIII CNMAC, Centro de Convenções do Armação Resort - Porto de Galinhas - PE, 2024

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Estudo de um Modelo SIR com Medidas de Prevenção através de uma Abordagem Numérica

Andrés D. B. Sánchez,¹ Nara Bobko² DAMAT/UTFPR, Curitiba, PR

Resumo. Este trabalho apresenta, usando uma abordagem numérica, um estudo do modelo epidemiológico SIRp. O modelo SIRp é uma extensão do modelo SIR que incorpora à dinâmica o possível efeito do comportamento preventivo da população. No presente estudo são ilustradas numericamente algumas características de destaque do modelo SIRp. O modelo SIRp permite generalizar o modelo SIR, no que diz respeito às possibilidades de pontos de equilíbrio, mas também permite considerar uma gama mais ampla de pontos de equilíbrio e de comportamentos transitórios significativamente distintos. Também é explorado o fato de que, sob certas condições, o modelo SIRp permite a coexistência de diferentes pontos de equilíbrio localmente estáveis incluindo um ponto de equilíbrio estável livre de doença, mesmo numa situação em que a taxa básica de replicação (R_0) excede o valor 1. Este estudo também considera algumas situações para ilustrar a influência das condições iniciais na determinação do comportamento a longo prazo.

Palavras-chave. Epidemiologia Matemática, Modelo Compartimental, Comportamento Preventivo, Dinâmica Transiente.

1 Introdução

A relevância dos modelos matemáticos como ferramenta de apoio no estudo da dinâmica de doenças infecciosas vem sendo reconhecida até mesmo antes do seu papel de destaque durante a epidemia de COVID-19 [4, 7]. Entretanto, o surgimento de diversas situações relacionadas ao comportamento da população durante a pandemia da COVID-19 tornou ainda mais evidente a necessidade de incorporar nos modelos matemáticos epidemiológicos a influência destes comportamentos [3, 5]

Alguns autores têm proposto e estudado modelos matemáticos considerando aspectos comportamentais [1, 2, 6, 8]. Em particular, Báez e Bobko [1] propuseram um modelo baseado no SIR com demografia que adiciona uma variável (p) associada às ações de prevenção à infecção adotadas pela população. Este modelo, que chamaremos de modelo SIRp, é definido pelo seguinte sistema de equações diferenciais:

$$\frac{dS}{dt} = \mu - (1-p)\beta S I - \mu S$$

$$\frac{dI}{dt} = (1-p)\beta S I - \mu I - \gamma I$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

$$\frac{dp}{dt} = p(1-p)(-a_0 + a_1 I + a_2 S).$$
(1)

 $^{1}adsanchez@utfpr.edu.br$

²narabobko@utfpr.edu.br

 $\mathbf{2}$

Neste modelo, como é usual no modelo SIR, as variáveis $S, I \in R$ representam as proporções da população pertencentes às categorias *Susceptíveis, Infetados* e *Removidos*, enquanto os parâmetros $\beta, \mu \in \gamma$ correspondem a taxas relacionadas à transmissão da infeção, natalidade/mortalidade e tempo médio de infecção, respetivamente. Note que o modelo SIRp considera ainda uma variável p, interpretada como uma medida do nível de adoção às medidas de prevenção à infeção adotadas pela população. No caso em que p = 1, por exemplo, o segundo termo na primeira equação e o primeiro termo na segunda equação de (1) se anulam, indicando uma situação na qual as medidas de prevenção estariam sendo adotadas por toda a população, o que impediria o contágio entre susceptíveis e infetados. Por outro lado, no caso em que p = 0, isto é, sem nenhuma intervenção preventiva por parte da população, as equações no sistema (1) correspondem ao modelo SIR

A quarta equação em (1) considera a variação dinâmica de p, dependendo das variáveis epidemiológicas $S \in I$, e dos valores específicos dos parâmetros $a_0, a_1 \in a_2$, relacionados, respetivamente ao custo fixo de adotar as medidas de prevenção, e aos ganhos percebidos por adotar o comportamento preventivo, associados à quantidade de infetados e susceptíveis. Esta forma específica da equação diferencial para p, também pode ser obtida a partir da equação do replicador da teoria de jogos evolutivos (veja por exemplo [9]), aplicada a um jogo de duas estrategias (adotar ou não as medidas anti-infeção) com um *payoff* simétrico dado por $-a_0 + a_1 I + a_2 S$.

O objetivo do presente trabalho é explorar, a partir de uma abordagem numérica, algumas das caraterísticas mais relevantes da dinâmica do modelo SIRp, comparando-o com o modelo SIR clássico. Com isso, esperamos contribuir com a compreensão da complexidade e diversidade de comportamentos decorrentes da incorporação das medidas de prevenção num modelo matemático epidemiológico.

2 Soluções de Equilíbrio e Estabilidade

Considerando as constantes

$$k = 1 + \frac{\gamma}{\mu}; \quad R_0 = \frac{\beta}{\mu + \gamma} \quad e \quad R_p = \frac{a_1 - ka_2}{a_1 - ka_0},$$
 (2)

é possível obter o seguinte resultado em relação às soluções de equilíbrio do modelo SIRp.

Lema 2.1. Qualquer solução de equilíbrio $P = (\bar{S}, \bar{I}, \bar{R}, \bar{p})$ do modelo SIRp, descrito no Sistema (1), satisfaz que $\bar{I} = \frac{1}{k} (1 - \bar{S})$ e $\bar{R} = (1 - \frac{1}{k}) (1 - \bar{S})$, e assim, as soluções de equilíbrio estão completamente determinadas pelos valores de \bar{S} e \bar{p} . Adicionalmente, qualquer ponto de equilíbrio do modelo SIRp pode ser classificado em alguma das seguintes categorias:

$$\begin{split} P_1: \ \bar{S} &= 1 \ e \ \bar{p} = 0; \\ P_2: \ \bar{S} &= 1 \ e \ \bar{p} = 1; \\ P_3: \ \bar{S} &= 1 \ e \ \bar{p} \in [0, 1], \ com \ a_0 = a_2; \\ P_4: \ \bar{S} &= \frac{1}{R_0} \ e \ \bar{p} = 0, \ com \ R_0 > 1; \\ P_5: \ \bar{S} &= \frac{1}{R_p} \ e \ \bar{p} = 1 - \frac{R_p}{R_0}, \ com \ R_0 > R_p > 1 \ e \ a_1 \neq ka_0; \\ P_6: \ \bar{S} &= \frac{1}{R_0(1-\bar{p})} \ e \ \bar{p} \in \left(0, \frac{R_0-1}{R_0}\right), \ com \ R_0 > 1 \ e \ ka_0 = a_1 = ka_2. \end{split}$$

Observe que os pontos de equilíbrio do tipo P_3 e P_6 correspondem a famílias de equilíbrios e que existem apenas em condições de igualdade entre os parâmetros a_i e k. Estas igualdades são muito pouco prováveis de ocorrerem em situações reais, por isto a estabilidade destas famílias de pontos de equilíbrio não será considera neste trabalho. Para os demais pontos de equilíbrio é possível estabelecer o resultado enunciado no Teorema 2.1. A demonstração deste teorema, a do Lema 2.1, bem como detalhes sobre os casos envolvendo os equilíbrios do tipo P_3 e P_6 podem ser encontrados em [1].

Teorema 2.1. Considere os pontos de equilíbrio descritos no Lema 2.1 e suponha que $a_0 \neq a_2$, $a_0 \neq a_1/k$, $R_0 \neq 1$, $e \ R_0 \neq R_p$.

- 1. Se $R_0 < 1$ então
 - (a) P_1 é localmente assintoticamente estável se $a_0 > a_2$;
 - (b) P_2 é localmente assintoticamente estável se $a_0 < a_2$,
 - (c) $P_4 e P_5$ não existem.
- 2. Se $R_0 > 1$ e $R_0 < R_p$, então
 - (a) P_4 é localmente assintoticamente estável se $a_0 > a_2$;
 - (b) P_2 é localmente assintoticamente estável se $a_0 < a_2$;
 - (c) P_1 não é estável;
 - (d) P_5 não existe.
- 3. Se $R_0 > 1$ e $R_0 > R_p$ então,
 - (a) P_5 é localmente assintoticamente estável se $a_0 > a_2$, $e a_0 < a_1/k$;
 - (b) P_4 é localmente assintoticamente estável se $a_0 > a_2$, e $a_0 > a_1/k$;
 - (c) P_2 é localmente assintoticamente estável se $a_0 < a_2$, $e a_0 < a_1/k$;
 - (d) $P_2 \ e \ P_4 \ são \ localmente \ assintoticamente \ estáveis \ se \ a_0 < a_2, \ and \ a_0 > a_1/k;$
 - (e) P_1 não é estável.

Note que o parâmetros R_0 e k são positivos (de fato, k > 1), sendo que R_0 corresponde à denominada taxa básica de replicação, cujo papel fundamental na descrição da estabilidade das soluções de equilíbrio no modelo SIR está bem estabelecida. Os resultados anteriores mostram que para o modelo SIRp, além do R_0 , há também um parâmetro R_p , não necessariamente positivo, dependendo tanto dos custos/ganhos a_i quanto do parâmetro populacional k, que resulta ser igualmente relevante na descrição do comportamento das soluções de equilíbrios do modelo SIRp. Na seção a seguir destacaremos e ilustraremos numericamente algumas das situações descritas no Teorema 2.1, assim como outras situações relacionadas à dinâmica transiente do modelo SIRp e do modelo SIR.

3 Estudo Numérico do Modelo SIRp

No caso em que a taxa básica de replicação inferior a 1 ($R_0 < 1$), tem-se para o modelo SIR clássico com demografia que o equilíbrio livre da doença será estável [7]. Este fenômeno também ocorre no modelo SIRp (1). Todavia, neste caso existem dois equilíbrios livres da doença: P_1 (sem comportamento preventivo) e P_2 (adoção completa do comportamento preventivo). A correspondente estabilidade é determinada pelos valores de a_0 e a_2 . Quando se trata de uma

doença com taxa básica de replicação superior a 1 ($R_0 > 1$), o modelo SIR clássico apresenta apenas uma possibilidade: um equilíbrio endêmico estável e um equilíbrio livre da doença instável. Os casos (2a) e (3b) do Teorema 2.1, de certa forma, refletem esta mesma situação no modelo SIRp, pois o equilíbrio P_4 corresponde ao equilíbrio endêmico do modelo SIR. A Figura 1 ilustra uma instância da situação considerada no item (3b) do Teorema 2.1. Note que mesmo com a inclusão da variável associada aos comportamentos de prevenção (a_i não sendo todos nulos), o modelo SIRp ainda é capaz de capturar a estabilidade do equilíbrio endêmico que o modelo SIR apresentava, ao mesmo tempo que permite a possibilidade de comportamentos transientes diversos que variam de acordo com os valores dos parâmetros a_i .

Figura 1: Equilíbrio endêmico nos modelos SIRp e SIR. Parâmetros: $R_0 = 3$, $\gamma = 0.1$, k = 10, $a_0 = 0.105$, $a_1 = 0.05$ e $a_2 = 0.0525$, resultando em $R_p = 0.475$. Fonte: autoria própria.

Outra situação interessante relacionada aos equilíbrios endêmicos e aos equilíbrios livres da doença destes dois modelos é ilustrada na Figura 2. Considerando-se os mesmos parâmetros epidemiológicos (μ , $\gamma \in R_0$), com $R_0 > 1$, e as mesmas condições inicias (S(0), $I(0) \in R(0)$), o modelo SIR irá convergir para o equilíbrio endêmico (equivalente ao P_4 do Lema 2.1), mas o modelo SIRp poderá convergir para o equilíbrio P_2 .

Figura 2: Equilíbrio P_2 no modelo SIRp vs. equilíbrio endêmico no modelo SIR. Parâmetros: $R_0 = 3$, $\gamma = 0.1$, k = 10, $a_0 = 0.009$, $a_1 = 0.1$ e $a_2 = 0.018$, resultando em $R_p = -8$. Fonte: autoria própria.

A Figura 2 ilustra como o modelo SIRp não apenas possibilita a convergência (local) para um ponto de equilíbrio diferente em relação ao modelo SIR, mas também permite a convergência para um equilíbrio livre da doença (e com adoção total das medidas de prevenção), mesmo com $R_0 > 1$.

Esta possibilidade é de grande interesse do ponto de vista biológico, pois captura o cenário em que toda a população tende a adotar medidas de prevenção, evitando assim que a doença se estabeleça, mesmo com $R_0 > 1$. Apesar do Teorema 2.1 (2b) garantir apenas a estabilidade local do ponto de equilíbrio P_2 , a Figura 3 sugere que esta convergência não está restrita apenas para condições iniciais específicas. Observe que, mesmo considerando-se condições iniciais próximas aos valores do ponto de equilíbrio P_4 (que equivale ao equilíbrio endêmico do modelo SIR), as soluções do modelo SIRp estão convergindo para o equilíbrio P_2 .

Figura 3: Convergência ao equilíbrio livre de doença P_2 no modelo SIRp para diferentes condições inciais. Parâmetros: $R_0 = 3$, $\gamma = 0.1$, k = 10, $a_0 = 0.01$, $a_1 = 0.02$ e $a_2 = 0.0312$, resultando em $R_p = 3.65$, condições iniciais S(0), I(0) = p(0) variando em [0.1, 1) = R(0) = 1 - S(0) - I(0). Fonte: autoria própria.

Outra caraterística que resulta interessante no modelo SIRp, é que ao contrário do modelo SIR, é possível a coexistência de dois equilíbrios localmente estáveis: um livre da doença e um endêmico (Teorema 2.1(3d)). A convergência para um ou outro ponto de equilíbrio dependerá das condições iniciais. Esta situação é ilustrada na Figura 4, onde as linhas pontilhadas indicam os respectivos valores de convergência das curvas.

Figura 4: Equilíbrios P_2 (livre da doença) e P_4 (endêmico) no modelo SIRp. Parâmetros: $R_0 = 3$, $\gamma = 0.1$, k = 10, $a_0 = 0.1$, $a_1 = 0.9$ e $a_2 = 0.11$, resultando em $R_p = 2$. Para o Caso 1 considerou-se S(0) = 0.9 e para o Caso 2 S(0) = 0.3. Em ambos os casos I(0) = 0.1, R(0) = 1 - S(0) - I(0) e p(0) = 0.5. Fonte: autoria própria.

 $\mathbf{6}$

O modelo SIRp também incorpora a possibilidade de um outro equilíbrio endêmico que não existe no modelo SIR: o ponto de equilíbrio P_5 . A Figura 5 ilustra uma instância onde este equilíbrio resulta estável (Teorema 2.1 (3a)).

Figura 5: Equilíbrios endêmicos diferentes no modelo SIR
p e no modelo SIR. Parâmetros: $R_0 = 3, \gamma = 0.1, k = 10, a_0 = 0.02, a_1 = 0.7$
e $a_2 = 0.01$ resultando em $R_p = 1.2$. Fonte: autoria própria.

Quando os dois modelos convergem para equilíbrios diferentes mesmo com condições iniciais idênticas, como no caso anterior, não é surpreendente que haja uma diferença também no comportamento transiente como ilustrado na Figura 5. No entanto, mesmo quando os dois modelos convergem ao mesmo equilíbrio no longo prazo, o comportamento transiente no curto prazo pode ser muito diferente. A Figura 6 ilustra este tipo de situação.

Note que os comportamentos transientes são bastante distintos em ambos os casos (Figuras 5 e 6) e em particular, observe a diferença na magnitude e quantidade de vales e picos de infeção apresentados pelos dois modelos. Além disso, observe que o modelo SIRp apresenta períodos longos de aparente estabilização seguidos de um incremento no número de infetados. Se estivéssemos numa tentativa de ajustar um modelo a um conjunto de dados com uma forma similar à descrita pelo modelo SIRp, mas considerando o modelo SIR clássico, poderíamos realizar uma estimação errada do valor de R_0 e, consequentemente, numa estimativa incorreta para a gravidade da doença.

Figura 6: Mesmo equilíbrio endêmico, comportamentos transientes diferentes. Parâmetros: $R_0 = 3$, $\gamma = 0.1$, $k \approx 2704$, $a_0 = 0.02$, $a_1 = 0.9$ e $a_2 = 0.01$ resultando em $R_p \approx 0.49$. Fonte: autoria própria.

4 Considerações Finais

O modelo SIR
p estudado permite generalizar o modelo SIR, considerando novos tipos de equilíbrio e trajetórias epidemiológicas significativamente distintas às do modelo SIR. O estudo numérico a
presentado neste trabalho, ilustra a complexidade e a diversidade de comportamentos que podem
 aparecer ao incorporar os possíveis efeitos das medidas de prevenção num modelo epidemiológico. Trabalhos futuros poderão considerar vários aspectos não discutidos no presente estudo, tais como:
 ajuste do modelo a dados reais, estimativa dos parâmetros comportamentais a_i , uso de funções de payoff não lineares, entre outros. Esperamos com este trabalho contribua para uma melhor
 compreensão da dinâmica de epidemias e para o eventual desenvolvimento de políticas eficazes de controle e prevenção de doenças infecciosas.

Referências

- A. D. Báez-Sánchez e N. Bobko. "Effects of anti-infection behavior on the equilibrium states of an infectious disease." Em: Advances in Mathematical Sciences & Applications 30.2 (2021). ISSN: 1343-4373.
- C. T. Bauch. "Imitation dynamics predict vaccinating behaviour". Em: Proceedings of the Royal Society B 272 (2005), pp. 1669–1675. DOI: 10.1098/rspb.2005.3153.
- C. Betsch. "How behavioural science data helps mitigate the COVID-19 crisis". Em: Nature Human Behaviour (2020). DOI: 10.1038/s41562-020-0866-1.
- [4] F. Brauer. "Mathematical epidemiology: Past, present, and future". Em: Infect Dis Model 2.2 (2017), pp. 113–127. DOI: 10.1016/j.idm.2017.02.001.
- [5] P. Crepey, H. Noël e S. Alizon. "Challenges for mathematical epidemiological modelling". Em: Anaesthesia, Critical Care & Pain Medicine 41.2 (2022), p. 101053. DOI: 10.1016/j. accpm.2022.101053.
- [6] S. Hsiang, D. Allen, S. Annan-Phan, K. Bell, I. Bolliger, T. Chong, H. Druckenmiller, L. Y. Huang, A. Hultgren, E. Krasovich, L. Peiley, L. Jaecheol, R. Esther, T. Jeanette e W. Tiffany. "The effect of large-scale anti-contagion policies on the COVID-19 pandemic". Em: Nature 584.7820 (2020), pp. 262–267. DOI: 10.1038/s41586-020-2404-8.
- M. J. Keeling e P. Rohani. Modeling Infectious Diseases in Humans and Animals. Princeton University Press, 2011. ISBN: 978-1-4008-4103-5.
- [8] P. Manfredi e A. d'Onofrio (Eds.). Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases. Springer, 2013. ISBN: 978-1461454731.
- [9] J. W. Weibull. Evolutionary Game Theory. MIT Press, 1997. ISBN: 0262731215.