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Machine learning topology of Calabi-Yau links
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Abstract. Calabi-Yau links arise as special sphere fibrations over Calabi-Yau manifolds. In the
7-dimensional case, the links exhibit Sasakian and G2 structures. In this summary, previous work is
revisited, where machine learning and data science techniques are used to study topological quan-
tities related to the Sasakian and G2 geometries of contact Calabi-Yau 7-manifolds. Particularly,
properties of the respective Gröbner bases are well-learnt, and machine learning of those further
induced novel conjectures to be raised.
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1 Introduction

Calabi-Yau manifolds have been a growing investigation topic lying in the interplay between
geometry and theoretical physics since its introduction as a candidate for superstring compactifi-
cation in [11]. Once the topology of Calabi-Yau compactification determines important properties
of the effective field theory, the search for suitable manifolds that describe the observable universe
has been an active research interest. However, the landscape of possible Calabi-Yau manifolds
is enormous, expected to be at the order of 1010000 [5]. Thus, statistical and numerical meth-
ods provide means for feasibly extracting relevant data, of which machine learning techniques are
becoming increasingly prominent. Notably, machine learning methods have been employed to pre-
dict Hodge numbers [15, 18], approximate Ricci-flat Calabi-Yau metrics [7, 14, 21], forecast line
bundle cohomologies [20], generate new Calabi-Yau manifolds [8], and uncover volume bounds on
Sasaki-Einstein manifolds [23].

As important as Calabi-Yau compactification is to string theory, 7-manifolds of holonomy G2

are crucial to M-theory compactification [1, 2], which is manifestly 11-dimensional and requires
compactification with a 7-dimensional manifold. This has motivated the investigation into physical
applications of exceptional geometries with G2 holonomy and the more general G2-structure. In [3]
machine learning techniques are used to investigate the topology of underlying G2 and Sasakian
structures of Calabi-Yau links arising from Calabi-Yau 3-folds defined as hypersurfaces in P4(w)
spaces.

In this summary, discussions and results obtained by the previous author’s work [3] will be
reviewed. In §2, we briefly discuss Calabi-Yau links and their topological invariants. In §3, ma-
chine learning techniques are used to investigate some of those topological invariants, including
the Sasakian Hodge numbers and the Crowley-Nördstrom invariant. In §4, insights obtained via
machine learning and data science are used to raise novel conjectures concerning Calabi-Yau links.
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2 Calabi-Yau links
The structure group reductions on an odd-dimensional contact metric manifold (K2n+1, η, ξ, g),

where η ∈ Ω1(K) denotes the contact form and ξ ∈ X (K) its (unit) dual Reeb field such that
η(ξ) = 1; may be seen as even-dimensional structures transverse concerning a S1-action along the
fibres of a submersion S1 → K → V . In particular, Sasakian geometry may be seen as transverse
Kähler geometry, corresponding to the reduction of the transverse holonomy group to U(n). These
are equipped with a transverse complex structure J ∈ End(TK) such that J2 = −ITK + η ⊗ ξ,
yielding a decomposition of forms by basic bi-degree, and a transverse symplectic form ω = dη ∈
Ω1,1(K), all satisfying suitable compatibility conditions (see e.g. [25, §2] or [9, 10]). Furthermore,
Sasakian manifolds with special transverse holonomy SU(n) are studied in [16, § 6.2.1].

Definition 2.1. A Sasakian manifold (K2n+1, η, ξ, J,Υ) is said to be a contact Calabi–Yau
manifold (cCY) if Υ is a nowhere-vanishing transverse form of horizontal type (n, 0), such that

Υ ∧ Ῡ = (−1)
n(n+2)

2 ωn and dΥ = 0, with ω = dη.

Consider now a polynomial f ∈ C[z1, . . . , zn+2], for n ≥ 2. It is said to be weighted homo-
geneous of degree d with weight vector w = (w1, . . . , wn+2) ∈ Zn+2

>0 , if it is homogeneous of order
d with respect to the C×(w)-action on Cn+2, (t, z) 7→ t · z = (tw1z1, . . . , t

wn+2zn+2). Such an f
defines an affine variety Vf = (f) = {z ∈ Cn+2 | f(z) = 0}, which in general admits the origin as
a singular point.

Assuming that the origin is an isolated singularity, Milnor [24] showed that the intersection of
Vf with a small hypersphere centred at the origin S2n+3

ε is a compact smooth (2n + 1)-manifold
Kf = Vf ∩ S2n+3

ε , the so-called weighted link of the singularity. A weighted link Kf of degree d
and weight w is a Calabi-Yau link if the following condition holds, which precisely guarantees
the existence of a cCY structure on Kf :

d =

n+2∑
i=1

wi, (1)

Sasakian Hodge numbers of a CY link. The C×(w)-action on Cn+2 induces a contact-metric
S1-action on Kf . It admits finitely many distinct isotropy subgroups, contained in some finite
subgroup Γ ⊂ S1, so that Kf admits a double fibration over a projective n-orbifold V ⊂ Pn+1(w),
π : Kf −→ Kf/Γ −→ Kf/S

1 = (Vf \ {0})/C× := V ∗
f . The following key theorem allows us to

compute certain mixed Hodge numbers hp,q(Kf ) from the dimensions of the primitive cohomology
groups Hn

0 (V
∗
f ), for p+ q = n, which in turn can be obtained from the Milnor algebra.

Theorem 2.1 ([19, Theorem 1.2], [26, 27]). Let f be a w-homogeneous polynomial on Cn of degree
d. Given p+q = n, let ℓ = (p+1)d−

∑
i wi, and denote by (Mf )ℓ the linear subspace of the Milnor

algebra consisting of degree ℓ elements.

hp,q(Kf ) = dimC(Mf )ℓ.

When Equation (1) is satisfied, i.e. Kf is a Calabi-Yau link, the condition reduces to ℓ = pd.

The Crowley-Nordström invariant on cCY 7-manifolds. For an arbitrary closed 7-manifold
with G2-structure (Y 7, φ), Crowley and Nordström have defined a Z/48Z-valued homotopy invari-
ant ν(φ), which is a combination of topological data from a compact coboundary 8-manifold with
Spin(7)-structure (W 8,Ψ) extending (Y 7, φ), in the sense that Y = ∂W and Ψ |Y = φ, where χ
the real Euler characteristic and σ is the signature:

ν(φ) := χ(W )− 3σ(W ) mod 48, (2)
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G2-structure on cCY 7-manifolds. Finally, specialising to real dimension 7 (n = 3), a contact
Calabi–Yau structure naturally induces a coclosed G2-structure (with symmetric torsion):

Proposition 2.1 ([16, Corollary 6.8]). Every cCY manifold (K7, η, ξ, J,Υ) is an S1-bundle π :
K → V over a Calabi–Yau 3-orbifold (V, ω,Υ), with connection 1-form η and curvature

dη = ω, (3)

and it carries a cocalibrated G2-structure

φ := η ∧ ω +ReΥ, (4)

with torsion dφ = ω ∧ ω and Hodge dual 4-form

ψ = ∗φ =
1

2
ω ∧ ω + η ∧ ImΥ. (5)

3 Topological invariants & machine learning

In [3], an exhaustive database of Calabi-Yau links from Calabi-Yau 3-folds defined as hyper-
surfaces in P4(w) spaces was constructed3. The Calabi-Yau 3-folds arising in the link construction
are hypersurfaces in complex weighted projective space P4(w). Such spaces are compact Fano
manifolds (with positive curvature), constructed through identification of C5 with a weight vector
of 5 entries, i.e., (z0, . . . , z4) ∼ (λw0z0, . . . , λ

w4z4)∀λ ∈ C∗. It was shown in [12], that the list of
weight vector combinations leads to unique weighted projective spaces whose anticanonical divisors
are compact and Ricci-flat is finite, with N = 7555 possible cases.

Therefore, for each of the 7555 possible links in the generated database, the respective Gröbner
basis was computed, and invariants as Sasakian (i.e. transverse Kähler) Hodge numbers {h3,0, h2,1}
and Crowley-Nördstrom invariant ν were obtained via algorithmic implementation of Theorem 2.1
and Eq.(2). For all the links in the database, it was observed that h3,0 = 1, interestingly matching
all the constituent Calabi-Yau manifolds used in their construction. The distributions of h2,1’s
and ν’s can be visualised in Figures 1 and 2, respectively. Figure 3 shows the Calabi-Yau complex
threefold h2,1 values versus the Sasakian transverse h2,1S .
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Figure 1: Distribution of h2,1S [3].
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Figure 2: Distribution of ν [3].

3Data and code available at: https://github.com/TomasSilva/MLcCY7.git
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Figure 3: CY complex threefold h2,1 values against the Sasakian transverse h2,1 [3].

Once built the database of Calabi-Yau links, and motivated by previous works that successfully
utilised supervised machine learning to predict Calabi-Yau Hodge numbers [15, 17, 18], similar
techniques were employed in [3] to predict the computed link topological properties using only
the weights defining the ambient spaces P4(w). However, where in the Calabi-Yau case there is a
known explicit formula mapping the weights to the respective Calabi-Yau Hodge numbers, there
is no known direct relation bypassing the information of both the Calabi-Yau polynomial choice
and the particularly expensive computation of the associated Gröbner basis used to compute the
Sasakian Hodge numbers. Hence, machine learning prediction of Gröbner basis related properties
can not only speedup expensive computations, but also give meaningful insights about those.

A field of machine learning is supervised learning, which exploits fitting techniques trained
on pairs of input and output data. Given a dataset, divide it into training and testing subsets.
Firstly, during a training stage, an optimiser method adjusts some architecture’s parameters across
batches of the training dataset to minimise some (loss) function of the true output and predicted
output for each batch input. After rounds of the training process on the training dataset, the
final trained architecture is then evaluated on its predictions for the independent testing dataset,
allowing an evaluation of performance. The processes of training and testing may be repeated on
multiple partitions of the original dataset on independent but identically designed architectures to
provide means of averaging and calculating the confidence of the learning metrics (see e.g. [22]).
The metrics utilised to evaluate the supervised learning process in [3] were the Mean Absolute
Error (MSE) and the Coefficient of Determination (R2), defined below:

MAE =
1

N

N∑
i=1

|yi − ŷi| (6)

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
∈ (−∞, 1]. (7)

The MAE metric (6) computes the mean deviation of the predicted values from the true values.
In turn, the R2 metric (7) is the proportion of the variance in the dependent variable that is
predictable from the independent variable(s), implying that a score close to 1 means the regression
model is a good fit, whereas a score close to 0 means the model is a poor fit.

In [3], a supervised neural network (NN) (see e.g. [6]) and a symbolic regressor (SR) [13] were
utilised to predict some of the CY link topological invariants discussed in §2 using each weight
vector w = (wi)i=0,...,4 alone. Whilst the prediction of the Crowley-Nördstrom invariant didn’t
perform well, both methods perform surprisingly well predicting the Sasakian h2,1 (see Table 1).
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Method R2 MAE
NN ≈ 0.969 ≈ 5.53
SR ≈ 0.99 ≈ 2.6

Table 1: Supervised learning measures for h2,1S prediction [3].

These results are equivalently strong and exemplify the efficacy of ML methods in predicting
more subtle topological parameters. Figures 4 (resp. 5) illustrates the performance of NN (resp.
SR) predictions against the true values of h2,1S for each 7555 database link. Moreover, while the
NN behaves as a black box oracle that predicts the h2,1S for a giver weight vector (wi), the SR
produces interpretable relations between inputs and outputs, as in Eq.(8).

h2,1PySR(w0, . . . , w4) =
14.91w1 (w0w4 + w3 (w0 + w3)) + 10.02w2w3 (w0 + w4 + 0.77)

w0w1w2w3
. (8)
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Figure 4: NN prediction vs. actual h2,1S [3].
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Figure 5: SR prediction vs. actual h2,1S [3].

4 Novel conjectures
Computing the considered invariants for a variety of polynomials, with the correct singularity

structure and defined from the same weight system, showed the same invariant values each time. In
face of those results, the work summarised here [3] conjectured extension of the R-equivalence of [4],
such that all polynomials with the same weight system would have isomorphic linear subspaces in
their respective Milnor algebras.

Conjecture 4.1 ([3, Conjecture 7]). Two weighted homogeneous polynomials f, g on Cn are said
to be weakly R-equivalent if the respective ℓ-degree linear subspaces of their Milnor algebras are
isomorphic, for each ℓ such that p+ q = n, as in Theorem 2.1. Consider two weighted homogenous
polynomials f, g on Cn of the same degree d; if their weight vectors wf and wg coincide (up to
permutations), then f and g are weakly R-equivalent.

Furthermore, one may also directly compare the values of the Sasakian Hodge number h2,1S and
the h2,1CY of the Calabi-Yau 3-fold used in the construction, as illustrated in Figure 3. As shown
in this figure, an unexpected upper bound is set by the CalabiYau 3-folds. This lead to another
novel conjecture about the link construction method.
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Conjecture 4.2 ([3, Conjecture 8]). The Sasakian Hodge number h2,1S for a Calabi-Yau link
is bounded above by the Hodge number h2,1CY of the Calabi-Yau 3-fold built from the same w-
homogeneous polynomial:

h2,1S ≤ h2,1CY . (9)

Future work is needed to prove these raised conjectures, expand the applications of machine
learning to other Gröbner bases dependent properties, and use machine learning interpretable
methods to help uncover the prospective formula for Calabi-Yau link Sasakian Hodge numbers
from the weight information.
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