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Instituto de Ciências Matemáticas e de Computação, USP, São Carlos, SP

Abstract. The present work uses persistent homology combined with machine learning to
identify (classify) parameters of system of equations producing complex patterns. Persistent
homology is used as a tool to extract topological information from the patterns. This
topological information is in turn used as features for the machine learning methods used
for the classification. The method is applied to patterns generated by a predator-prey system
using the SVM, PLS-DA, and the Naive Bayes machine learning methods.
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1 Introduction

Mathematical models, in particular, differential equations, are extensively used to study
problems in sciences and engineering, and hence, it is extremely important to develop
methods to design and analyze such models. Designing mathematical equations to model
problems in sciences and engineering is referred to as mathematical modeling [14]. When
modeling a problem, it is necessary to decide what type of model to use, i.e., whether to use
differential equations or statistical models for example, and then to choose the appropriate
equations to describe the problem. Once a suitable model has been chosen, it is necessary
to ensure that it is solved correctly and that it solves the correct problem. In scientific
computing, this step is referred to as verification and validation of the model [5, 14].
More specifically, verification can be defined as the process of ensuring that the model
is correctly implemented and the solution is accurate (“solving the equations right”) and
validation can be defined as the process of determining that the model provides an accurate
description of the problem it is intended to describe (“solving the right equations”). The
validation process often involves comparing the results from the model to experimental
data [9, 14].

Mathematical models often include parameters that need to be determined during the
validation process. The process of determining the model parameters, called parameter
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identification, is a very important and challenging problem that is often addressed by
comparing the solutions of the model to experimental data [4, 9, 12,15,16].

In this paper, we propose to apply techniques from topological data analysis(TDA) [3],
more specifically, persistent homology [6] combined with machine learning [2] to study the
parameter identification problem in models producing complex spatio-temporal patterns
[7, 12]. More precisely, we compute persistent homology of the level sets of the patterns
produced by the system and use the corresponding persistence diagrams as features for
machine learning algorithms. One important aspect of the proposed method is that it can
be applied directly to the patterns (images) generated by the system, and hence can also
be applied to experimental data where we have only images representing the state of the
system, such as experiments in fluid dynamics for example [11,12].

2 Persistent Homology

In this section, we present a brief description of persistent homology. For a more in-
depth discussion please see [6, 10]. Persistent homology is a tool that provides metric
information about the topological properties of an object and how robust these properties
are with respect to change in parameters. More specifically, persistent homology counts
the number of connected components and holes of various dimensions and keeps track of
how they change with parameters.

Suppose that we have a space (object) X that varies as a function of a parameter.
Persistent homology provides a way of capturing how the shape of this object changes as
we vary this parameter. To make this more precise, we need to describe the type of spaces
X we consider and how X changes with the parameter [10].

Let h ∈ R be a fixed grid size. Given j ∈ Z we denote by Ij = [jh, (j + 1)h] the
interval of length h with end-points jh and (j + 1)h. An n-dimensional cube (or a cube
of dimension n) is a set of the form Ij1 × Ij2 × · · · × Ijn , where j1, j2, . . . , jn ∈ Z. An
n-dimensional cubical complex is a finite collection X of n-dimensional cubes.

To a cubical complex X, we associate a collection of groups Hk(X), k = 0, 1, . . .,
called homology groups of X, that provide the essential topological features of X. For
the type of complexes that we consider in this paper, the homology groups are of the
form Hk(X) = Rβk , where βk is a non-negative integer called the k-th Betti number of X.
Therefore, for the cubical complexes we considered in this paper, the homology groups are
in fact vector spaces, and the Betti numbers are the dimensions of these vector spaces.
The Betti numbers have the very important property that the k-th Betti number βk is
equal to the number of “k-dimensional holes” in X. More specifically, for k = 0, 1, 2, β0 is
the number of connected components of X, β1 is the number of holes or tunnels in X, and
β2 is the number of cavities in X. For more details see [6, 10]. In this paper we consider
only 2-dimensional cubical complexes, hence we are concerned only with the number of
components β0 and the number of holes β1. For an example, see Figure 1.

Given a finite collection of n-dimensional cubical complexes X1 ⊂ X2 ⊂ · · · ⊂ Xr, per-
sistent homology provides information about the changes in the Betti numbers as we move
from one cubical complex Xj to the next one Xj+1. The collection of cubical complexes Xi

is called a filtration and denoted by X . More precisely, the persistent homology PHk(X ) of
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X is characterized by its persistence diagrams PDk(X ), k = 0, 1, . . ., where each PDk(X )
is a multi-set of pairs of points of the form (b, d) called birth-death pairs [6]. Each point
(b, d) ∈ PDk(X ) represents a k-dimensional hole γ in X . The number b ∈ {1, 2, . . . , r} is
called the birth time (birth index ) of γ and the number d ∈ {1, 2, . . . , r,+∞} is called the
death time (death index ) of γ. We say that γ was born at time b and died at time d. The
birth time b indicates where in the filtration the hole γ first appears, and the death time
d indicates where in the filtration γ disappears. Notice that d is allowed to be +∞, to
account for the cases where γ never dies. Software for efficient computation of persistent
homology is available [13]. Figure 1 presents an example of a cubical filtration and its
persistence diagrams.

Figure 1: Filtration of cubical complexes X1 ⊂ X2 ⊂ · · · ⊂ X6, and their Betti number β0
and β1 (top), and the corresponding persistence diagrams (bottom).

3 Machine Learning

Machine learning is becoming one of the most active areas of research in computer science
and data analysis in recent years. One of the reasons for this is the great number of
successful applications of machine learning in many different areas of science [2]. Machine
learning can be broadly divided into two main areas: supervised learning and unsupervised
learning. In supervised learning we have a dataset, called training dataset, for which we
know the answers to the questions we are interested in and we use this dataset to “train
our machine”. We then use our “trained machine” to obtain the answers to our questions
for other datasets. In unsupervised learning, on the other hand, we want to extract
information (such as clustering information, for example) from our dataset without the
aid of a training dataset.

One of the main tasks in supervised learning is classification: given a dataset, we
want to classify each element of the set as belonging to one of a predetermined collec-
tion of classes. This can be described more formally as follows. Let X be a vector
space, the elements of which are called feature vectors and are meant to represent the
features used to describe our objects. Let C = {c1, c2, . . . , cd} ⊂ R be a set of class la-
bels. The goal of supervised classification is to classify each element of X as belonging
to one of the classes given by C. To this end, assume that we are giving a set of pairs
{(x1, y1), (x2, y2), . . . , (xN , yN )} ⊂ X × C called training dataset. Given one such pair

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 6, n. 2, 2018.

DOI: 10.5540/03.2018.006.02.0444 010444-3 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.02.0444


4

(xi, yi) we say that the vector xi belongs to the class labeled by yi. Supervised machine
learning classifies the elements of X by using the training dataset to “learn” (or “train”) a
parameter dependent function g : X×Rm → C satisfying some given optimality conditions
and such that g(xi, α) = yi for all i = 1, . . . , N . Learning the function g means finding
a value for the parameter α = α0 such that f(x) := g(x, α0) satisfies all the required
conditions. Once we have the trained function f : X → C, we define the class to which a
vector x ∈ X belong to be the class whose label is given by f(x) ∈ C.

The machine learning methods used in this paper are the Support Vector Machines
(SVM) classifier [8], the Partial Least Squares-Discriminant Analysis (PLS-DA) classifier
[1], and the Naive Bayes classifier [2]. The performance of a machine learning method
on a dataset is measured by the accuracy, which measures the overall amount of correct
identification from all predictions that were made (percentage) on the dataset.

4 Persistence Homology of Level Sets

Given a function u : Ω → R defined on a rectangle Ω := [a, b] × [c, d], we can construct a
cubical complex filtration by making a grid on the domain Ω and considering the sub-level
sets of u given by Ur := {(x, y) ∈ Ω | u(x, y) ≤ r} .

We then define the cubical complex Xr to be the set of grid elements that intersect
Ur. Since there is only a finite number of grid elements, we get a finite filtration of cubical
complexes Xr0 ⊂ Xr1 ⊂ · · · ⊂ XrN , with r0 < r1 < · · · < rN , where Xr0 = ∅, and XrN is
the full cubical grid. Using this filtration we can compute the persistent homology of the
sub-level sets of u (see Figure 3).

Our goal is to use persistent homology level sets to identify parameters in systems pro-
ducing complicated spatio-temporal patterns. For this purpose we consider the following
reaction-diffusion predator-prey system [7]


∂u

∂t
= ∆u+ u(1− u)− uv

α+ u
∂v

∂t
= δ∆v + β

uv

α+ u
− γv

(1)

defined on a rectangular domain Ω with no-flux (Neumann) boundary conditions. Here,
u(x, t) and v(x, t) represent the population densities of prey and predators, respectively, at
time t and position x. The choice of boundary conditions is equivalent to the assumption
that both species cannot leave the domain.

We solve the predator-prey system (1) numerically on a uniform grid in space and time
using a semi-implicit (in time) finite-differences method given in [7]. We denote the grid
sizes in space by h and in time by ∆t. For our experiments we fix the domain size and
the parameter values as follows: Ω = [0, 400]× [0, 400], h = 1, ∆t = 1/3, α = 0.4, γ = 0.6,
and δ = 1, and vary the parameter β. Figure 2 shows some solutions of (1) for different
values of β. In Figure 3 we present some level sets of the solution on the left of Figure 2
and the persistence diagrams of the corresponding filtration.
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Figure 2: Level sets of solutions u(x, t) for t = 300 of the predator-prey system (1) starting
with a random initial condition for β = 2.0 (left), β = 2.1 (middle), and β = 2.2 (right).

Figure 3: Some complexes on the filtration of level sets of the solution corresponding to
β = 2.0 on Figure 2 (top) and the corresponding persistence diagrams (bottom).

5 Proposed Method and Results

The goal of this paper is to apply machine learning to identify parameters of solutions of
(1). More specifically, we use the persistence diagrams of the level sets of the solutions to
extract features from the solutions and apply machine learning to these features.

Recall from Section 2 that the k-dimensional persistence diagram of a level set filtration
X is a multi-set PDk(X ) of pairs of points of the form (b, d), where each pair correspond to
the birth and death values of a given k-dimensional hole γ in terms of the level set values
r for which γ appears and disappears in the filtration X . To extract a feature vector from
the persistence diagram PDk(X ), we fix rmin < rmax and consider only the persistence
points whose birth values are in the interval [rmin, rmax]. Now consider a uniform grid
rmin = r0 < r1 < · · · < rm = rmax consisting of m subintervals of [rmin, rmax], and let vj
be the number of pairs in the persistence diagram PDk(X ) whose birth value b is in the
interval [rj−1, rj ]. We define the k-dimensional persistence feature vector of size m to be
the vector vk(X ) = (v1, v2, . . . , vm) ∈ Rm.

5.1 Experiments and Results

As described in Section 4, we solve the predator-prey system (1) numerically on the domain
Ω = [0, 400]× [0, 400] with spatial grid size h = 1, time step ∆t = 1/3, and the parameters
values: α = 0.4, γ = 0.6, and δ = 1. For the computations in this paper, we consider three
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values of the parameter β, namely, β1 = 2.0, β2 = 2.1, and β3 = 2.2. For each value of the
parameter β, we solve the system (1) up to t = 300, and consider the solutions u(x, t) for
t varying from t = 100 to t = 300 to form our dataset. Hence, we have three datasets of
solutions corresponding to β1, β2, and β3 that we denote by S1, S2, and S3, respectively.
Since ∆t = 1/3, each dataset consists of 600 solutions of (1).

Now given values of rmin, rmax, and m, for each solution u(x, t) in the datasets S1,
S2, and S3, we constructed a level set filtration X , computed its persistence diagram
using the software Perseus [13], and constructed the 0-dimensional and the 1-dimensional
persistence feature vectors v0(X ) and v1(X ). Finally, we concatenated these two vectors
and define the persistence feature vector w(X ) :=

(
v0(X ), v1(X )

)
∈ R2m. Therefore, we

have three datasets of feature vectors, that we denote by P1(m), P2(m), and P3(m), each
one consisting of 600 feature vectors of size 2m.

We fix the values of rmin = 0 and rmax = 0.792 for the 0-dimensional and the 1-
dimensional persistence diagrams, and compute the datasets P1(m), P2(m), and P3(m)
for several values of m. For each value of m we apply the methods SVM, PLS-DA, and
Naive Bayes to classify all possible pairs Pi(m) and Pj(m), and also to classify the three
datasets P1(m), P2(m), and P3(m). For each run, we randomly selected 80% of the dataset
as the training set and the remaining 20% as the test set. We run each computation 30
times and compute the average accuracy among these 30 computations. Figure 4 shows
the plots of the average accuracy as a function of m. As we can see from these results, the
classification is successful in all the cases. Hence, the method is effective in identifying the
parameter values corresponding to each dataset.

Figure 4: Average accuracy values versus the parameter m for SVM (left), PLS-DA (mid-
dle), and Naive Bayes (right) classifiers.

6 Conclusions
We use persistent homology as a feature extractor for machine learning methods to identify
parameter in systems of equations exhibiting complex spatio-temporal patterns. The
method is applied to the patterns generated by the system, hence it can be applied directly
to experimental (image) data. The method presents excellent results on the datasets
considered in our experiments.
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