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Pitfalls in the dynamics of coupled electromechanical systems
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Abstract. One of the main features of electromechanical systems is the mutual influence
between electrical and mechanical parts. This interaction characterizes coupling. Each part
of the system affects the behavior of the other. To properly represent the dynamics of a
coupled system, it is necessary to properly characterize how is this interaction between the
parts. Any change in model of the interaction affects the behavior of the entire system.
Typically, the coupling between electrical and mechanical parts is expressed by a set of
coupled differential equations. The dynamics of the coupled system is given by an initial
value problem comprising this set of coupled differential equations. Some references in the
literature claim that it is possible to reduce the number of equations in initial value problem
without changing the interaction between the electrical and mechanical parts. They assume
a hypothesis that a term in the equations can be neglected in a way that the coupling between
the parts becomes a linear algebraic relationship. This hypothesis reduces the number of
equations to be integrated, however it is a pitfall! It implies the decoupling of the motor-cart
system, misleading the results as it is shown in this paper.
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1 Introduction

Coupled systems present an interesting behavior, usually nonlinear, characterized by
the mutual influence between the parts of the system [5,6]. Each part of the system affects
the behavior of the other in a way that the coupling between them varies with the coupling
condition.

In this paper, we are interested in a specific type of coupling: electromechanical. We
analyze systems with an electrical and a mechanical parts. Typically, in this kind of
system, there is a geometrical constraint between the electrical and mechanical parts. To
illustrate, we present two simple electromechanical systems composed by a cart coupled
to a DC motor, see Figs. 1(a) and 1(b). The difference between these two systems is the
mechanism that couples the electrical and mechanical parts. In Fig. 1(a), it is shown a
mechanism called scotch yoke and in Fig. 1(b), slider crank mechanism. Both of them
relate the horizontal cart motion x with the motor rotational motion α, i.e., introduces a
constraint between these two variables.
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(a) (b)

Figure 1: (a) Electromechanical system with a scotch yoke mechanism. (b) Electromechanical
system with a slider crank mechanism.

In this work, we focus on the system with the scotch yoke mechanism. To translate the
results to the other case is trivial. Due to the system geometry, x(t) and α(t) are related
by the following constraint

x(t) = d cos (α(t)) . (1)

2 Dynamics of an Electromechanical System

To determine the dynamics of the electromechanical system sketched in Fig. 1(a), first
we derive the equations of the dynamics of each part of systems, electrical (DC motor)
and mechanical (cart). After we couple the equations by the coupling torque that exists
between the parts and the geometric constraint given by Eq. (1).

The mathematical modeling of DC motors is based on the Kirchhoff’s law. It is written
as

lċ(t) + r c(t) + keα̇(t) = ν , (2)

jmα̈(t) + bmα̇(t)− ke c(t) = −τ(t) , (3)

where t is the time, ν is the source voltage, c is the electric current, α̇ is the angular speed
of the motor, l is the electric inductance, jm is the inertia moment of the motor, bm is
the damping ratio in the transmission of the torque generated by the motor to drive the
coupled mechanical system, ke is the motor electromagnetic force constant and r is the
electrical resistance. The available torque delivered to the coupled mechanical system is
represented by τ , that is the component of the torque vector τ . Assuming that τ and
ν are constants in time, the motor reaches a steady state in which the electric current
and the angular speed become constants in time. When τ is not constant in time, the
angular speed of the motor shaft and the current do not reach a constant value. This kind
of situation happens when, for example, a mechanical system is coupled to the motor.
In this case, α̇ and c variate in time in a way that the dynamics of the motor will be
influenced by the coupled mechanical system. To model the coupling between the motor
and the mechanical system, the motor shaft is assumed to be rigid. Thus, the available
torque vector to the coupled mechanical system, τ , can be written as

τ (t) = d(t)× f(t) , (4)

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 6, n. 2, 2018.

DOI: 10.5540/03.2018.006.02.0310 010310-2 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.02.0310


3

where d = (d cosα(t), d sinα(t), 0) is the vector related to the eccentricity of the pin,
and where f is the coupling force between the DC motor and the cart. Assuming that there
is no friction between the pin and the slot, the vector f only has a horizontal component,
f (the horizontal force that the DC motor exerts in the cart). The available torque τ is
written as

τ(t) = −f(t) d sinα(t) . (5)

Due to constraints, the cart is not allowed to move in the vertical direction. The cart mass
is m and the horizontal cart displacement is represented by x. Since the cart is modeled
as a particle, it satisfies the equation

m ẍ = f(t) . (6)

Substituting Eqs. (4) to (1) into Eqs. (2) and (3), we obtain the initial value problem for
the motor-cart system that is written as follows. Given a source voltage ν, find (α, c) such
that, for all t > 0,

l ċ(t) + r c(t) + ke α̇(t) = ν , (7)

α̈(t)
[

jm +md2(sinα(t))2
]

+ α̇
[

bm +md2α̇(t) cosα(t) sinα(t)
]

− ke c(t) = 0 , (8)

with the initial conditions

α̇(0) = 0 , α(0) = 0 , c(0) =
ν

r
. (9)

Observe that the dynamics of the coupled system is given by an initial value problem
comprising a set of coupled differential equations. There are some references in the lit-
erature, as the recent article published by Avanço R.H. (see [2]) and [1, 3, 4], that claim
that the inductance of the armature can be neglected due to the fact that the electrical
time constant of the motor l/r is usually much smaller than the mechanical time constant
rjm/ke

2. Please remark, that this is a hypothesis based only on parameters values, it does
not depend on the system being studied. In this paper we show that this hypothesis is far
from true, misleading the results. To exemplify how it misleads, we perform simulations
neglecting the inductance and not neglecting it and comparing the two results. One sees,
immediately, the big difference between the two dynamics. The system simulated is the
motor-cart system with the scotch yoke mechanism. The hypothesis implies the decou-
pling of the motor-cart system, this is a pitfall. The simplification of the calculations
modifies the dynamics!

3 Results of Numerical Simulations

For computation, the initial value problem defined by Eqs. (7) to (9) was integrated
in a range of [0.0, 6.0] seconds. The 4th-order Runge-Kutta method is used for the
time integration scheme with a time-step equal to 10−6. The motor parameters used in
all simulations are listed in Table 1. The cart mass is 5.0 kg. Observe that, with these
values, one has l

r
= 6.12×10−4 and rjm

ke
2 = 1.31×10−2. To demonstrate how the neglect of

the inductance misleads the results, we perform simulations neglecting and not neglecting
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Parameter Value

l 1.880× 10−4 H

jm 1.210× 10−4 Kg m2

bm 1.545× 10−4 Nm/(rad/s)

r 0.307 Ω

ke 5.330× 10−2 V/(rad/s)

Table 1: Values of the motor parameters used in simulations.

it and we compare the results. The simulations were computed for different values of
ν, the source voltage, and of d, the pin eccentricity. Figures 2(a) and 2(b) show the
phase portrait of α̇ graph as function of c for different values of ν. In these simulations
d = 0.05 [m]. Observe that the results are different. When the inductance is neglected,
there is a linear relation between α̇ and c. This can be verified by Eq. (7). If l ċ(t) = 0, it
is possible to write:

c(t) =
ν

r
−

ke
r

α̇(t). (10)

Considering this, the current is no more a variable of the system. The initial value problem
is reduced to only one equation (Eq. (8)) with only two initial conditions (α̇(0) and α(0)).
The initial value of the current is established by Eq. (10), i.e., c(0) is related with α̇(0).

Observe that when the inductance is not neglected, there is no functional relation
between α̇ and c. The relation depends on initial conditions.
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lċ = 0

c [Amp]

α̇
[r
a
d
/
s]

 

 
ν = 2 [Volts]
ν = 5 [Volts]
ν = 10 [Volts]
ν = 15 [Volts]
ν = 20 [Volts]

(b)

Figure 2: Phase portrait of the (a) not neglecting the inductance and (b) neglecting it, i.e.,
considering lċ = 0.

To quantify how the neglect of the inductance misleads the results, and also to enrich
the analysis, we computed the Fast Fourier Transform (FFT) of the current and motor
speed over time, ĉ and ˆ̇α. This tool have been used in the analysis of electromechanical
systems (please see [7,8]). It provides important information of the signals in the frequency
domain. The FFT was computed for the cases in which the inductance is neglected and
is not neglected. Figures 3(a) and 3(b) show the value of frequency which correspond to
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the first peak of the FFT of the current and motor speed for different values of ν. In these
simulations d = 0.05 m. Observe that as the value of ν grows, the difference between the
frequencies of the first peak neglecting and not neglecting the inductance also grows.
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Figure 3: Values of the first peak (not neglecting and neglecting the inductance) for the FFT of
(a) current (b) motor speed.

In [8] it is discussed the influence of the nominal eccentricity of the pin, the parameter
d, in the dynamics of the system. It is shown that this parameter is related with the
nonlinearity of the system. When d is small, the initial value problem of the motor-cart
system tends to a linear system, But as the eccentricity grows, the nonlinearities become
more pronounced.

To show how the neglect of the inductance misleads the results, specially when the
nonlinearities are more pronounced, we perform simulations neglecting and not neglecting
it and we compare the results for different values of d. Figures 4(a) and 4(b) show the
phase portrait of α̇ graph as function of c for different values of d. In these simulations
ν = 20.0 [V]. Figures 5(a) and 5(b) show the value of frequency which correspond to the
first peak of the FFT of the current and motor speed for different values of ν. In these
simulations ν = 20.0 Volts. Observe that as the value of ν grows, the difference between
the frequencies of the first peak neglecting and not neglecting the inductance also grows.

4 Conclusions

In this paper, a simple electromechanical system was analyzed. It is shown that the
inductance of the armature must not be neglected in the dynamics. Neglecting it implies
the decoupling of the motor and cart! As was shown, the neglect introduces in the system
a linear algebraic relationship between α̇ and c. This misleads the results, since there is
no functional relation between these two variables. The lack of a functional relation is the
essence of the coupling! Coupling means the equations cannot be dealt separately.

The dynamics of the coupled system is given by an initial value problem comprising
a set of coupled differential equations. Any change in this set of coupled differential
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lċ = 0

c [Amp]

α̇
[r
a
d
/
s]

 

 
d = 0.004 [m]
d = 0.03 [m]
d = 0.02 [m]
d = 0.01 [m]
d = 0.005 [m]
d = 0 [m]

(b)

Figure 4: Phase portrait of the (a) not neglecting the inductance and (b) neglecting it, i.e.,
considering lċ = 0.
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Figure 5: Values of the first peak (not neglecting and neglecting the inductance) for the FFT of
(a) current (b) motor speed.
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equations modifies the interaction between electrical and mechanical parts, affecting the
behavior of the entire system. The hypothesis that the inductance can be neglected has
been used as a strategy to reduce the number of equations in the initial value problem.
With the neglect, the system is decoupled!

To quantify how the neglect of the inductance affects the dynamics, we performed
simulations neglecting the inductance and not neglecting it and comparing the two results.
The results show a big difference between the two dynamics. Hence, we showed that he
hypothesis that the inductance can be neglected based only on the values of the system
parameters can not be made in general. Unfortunately, due to space limitation, we cannot
show results for the system coupled with the crank mechanism. In it the differences are
even greater.
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