Trabalho apresentado no XXXVIII CNMAC, Campinas - SP, 2018.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Simulação Computacional da Dispersão de Objetos Sólidos Lançados em Um Acidente na Região Costeira do Estado de São Paulo

Jader Lugon Junior¹ Programa de Pós Graduação em Engenharia Ambiental, IFF, Macaé, RJ Manuela Juliano² Institute of Marine Research - IMAR, University of Azores, Ponta Delgada Jose Luiz Jeveaux³ Hugo Gallo Neto⁴ Instituto Argonauta para Conservação Costeira e Marinha, Ubatuba, SP Francine de Almeida Kalas⁵ Pedro Paulo Gomes Watts Rodrigues⁶ Departamento de Modelagem Computacional, Instituto Politécnico, IPRJ/UERJ, Nova Friburgo, RJ Antônio J. Silva Neto⁷

Departamento de Engenharia Mecânica e Energia, Instituto Politécnico, IPRJ/UERJ, Nova Friburgo, RJ

Resumo. A trajetória dos objetos flutuantes liberados no acidente envolvendo a queda de contêineres do navio Log-In Pantanal, ancorado a cerca de 3 km da costa, no Porto de Santos, em agosto de 2017, é simulada neste trabalho. A implementação computacional foi realizada na plataforma MOHID (MOdelagem HIDrodinâmica), com o módulo Water, utilizando a técnica de modelos encaixados (downscalling) na simulação hidrodinâmica local. A validação do modelo foi obtida satisfatoriamente por analogia aos resultados de temperatura superficial geradas pelo projeto MyOcean e aos perfis de temperatura e salinidade mensuradas por bóias Argo, atestando a modelagem realizada para a trajetória dos objetos flutuantes oriundos do acidente. O uso dessas tecnologias tem elevado potencial no apoio ao processo de busca em diferentes alvos provenientes de outros acidentes, bem como no subsídio a estudos ambientais.

Palavras-chave. Simulação numérica. MOHID. Downscalling. Acidente ambiental.

¹jlugonjr@gmail.com

²manuela.juliano@gmail.com

³jjeveaux@gmail.com

⁴hugo@aquariodeubatuba.com.br

⁵frankalas@iprj.uerj.br

⁶pwatts@iprj.uerj.br

⁷ajsneto@iprj.uerj.br

1 Introdução

O Porto de Santos está localizado no estado de São Paulo, entre os municípios de Santos e Guarujá. Inaugurado em 1892, é o maior complexo portuário da América Latina, com uma extensão de cais de 15.960 metros e área útil total de 7,8 milhões de metros quadrados. Conta com 55 terminais marítimos e retroportuários e 65 berços de atracação, dos quais 14 são de terminais privados [14].

Dados estatísticos apontam que, até novembro de 2017, o porto de Santos movimentou uma carga de 119 milhões de toneladas, sendo aproximadamente 34 % da carga em 3,5 milhões de contêineres [15]. Economicamente, este porto concentra mais de 50 % do produto interno bruto do país e aproximadamente 90 % da base industrial paulista está localizada a menos de 200 km.

Segundo informações veiculadas na imprensa, na madrugada (entre 1h30m e 3h) do dia 11 de agosto de 2017, o navio Log-in Pantanal, com capacidade de transportar 1706 contêineres, teve parte de sua carga (46 unidades) liberada acidentalmente, a uma distância de aproximadamente 3,2 quilômetros da costa [17]. Das 46 unidades, 38 delas afundaram e apenas 8 contêineres foram recuperados na costa. Aqueles que foram danificados na queda do navio liberaram material flutuante no oceano, os quais ficaram à deriva sendo deslocados pelas correntes e ventos [13].

Neste trabalho, a deriva dos objetos flutuantes provenientes do acidente ocorrido com a queda de contêineres no Porto de Santos é simulada no Sistema de Modelagem de Água da Plataforma MOHID (MOdelagem HIDrodinâmica) [16]. As simulações foram realizadas aplicando-se a técnica de downscalling, na qual as informações hidrodinâmicas na escala local são baseadas nos modelos de maior escala [4,8]. O rastreamento dos objetos no módulo Lagrangiano foi implementado através do algoritmo backtracking.

2 Modelagem Hidrodinâmica

O modelo hidrodinâmico tridimensional MOHID Water resolve as equações de Navier-Stokes (Eqs. 1 - 4) considerando as aproximações de Boussinesq e hidrostáticas, através da metodologia de volumes finitos [16]. A discretização espacial adotada por este modelo permite a implementação simultânea de vários tipos de coordenadas (sigma e cartesiana). A discretização temporal é obtida com a aplicação do algoritmo ADI semi-implícito.

$$\frac{\partial u_i}{\partial x_i} = 0 \tag{1}$$

$$\frac{\partial u_1}{\partial t} + \frac{\partial (u_j u_1)}{\partial x_j} = f u_1 - g \frac{\rho_\eta}{\rho_0} \frac{\partial \eta}{\partial x_1} - \frac{1}{\rho_0} \frac{\partial p_s}{\partial x_1} - \frac{g}{\rho_0} \int_z^{\eta} \frac{\partial \rho'}{\partial x_1} \partial x_3 + \frac{\partial}{\partial x_j} \left(v_h \frac{\partial u_1}{\partial x_j} \right)$$
(2)

$$\frac{\partial u_2}{\partial t} + \frac{\partial (u_j u_2)}{\partial x_j} = f u_2 - g \frac{\rho_\eta}{\rho_0} \frac{\partial \eta}{\partial x_2} - \frac{1}{\rho_0} \frac{\partial p_s}{\partial x_2} - \frac{g}{\rho_0} \int_{z}^{y} \frac{\partial \rho'}{\partial x_2} \partial x_3 + \frac{\partial}{\partial x_j} \left(v_h \frac{\partial u_2}{\partial x_j} \right)$$
(3)

$$\frac{\partial p}{\partial x_3} = -\rho g \tag{4}$$

onde u_i são as componentes de velocidade nas direções cartesianas x_i ; η é a elevação da superfície livre; f é o parâmetro de Coriolis; v_h a viscosidade turbulenta; p_s a pressão atmosférica; e $\rho \in \rho'$, a densidade e sua anomalia respectivamente.

2.1 Módulo Lagrangiano

O módulo Lagrangiano do MOHID Water é responsável pela simulação de processos com gradientes acentuados [16]. O movimento dos traçadores neste módulo pode ser afetado pelo campo de velocidades do módulo hidrodinâmico, pela velocidade de espalhamento (no caso de óleos) e ainda por oscilações aleatórias.

O deslocamento de um traçador é fortemente afetado pela velocidade média hidrodinâmica, cujo cálculo, em qualquer ponto do domínio, é definido por

$$\frac{\partial x_i}{\partial t} = u_i(x_i, t) \tag{5}$$

onde u_i representa a velocidade média e x_i a posição no domínio.

Este cálculo é computado no MOHID através de um método direto,

$$x_i^{t+\Delta t} = x_i^t + \Delta t. u_i^t \tag{6}$$

O transporte difusivo turbulento é calculado segundo a metodologia proposta na Ref. [1]. A velocidade de deriva devida ao vento pode ser incluída no cálculo da velocidade hidrodinâmica através de uma constante espaço-temporal.

O módulo Lagrangiano foi desenvolvido inicialmente para ser acoplado ao modelo hidrodinâmico 2D da Plataforma MOHID; em seguida foi ampliado para simulação de mecanismos mais complexos como descargas de águas residuais e derrames de óleo, sendo atualmente acoplado ao modelo hidrodinâmico 3D [11,12].

3 Metodologia para o Cálculo da Trajetória de Objetos Sólidos

3.1 Área de Estudo

O local onde ocorreu a queda dos contêineres corresponde à área de fundeio 3 do Porto de Santos. Os objetos flutuantes, e de menor tamanho, foram recolhidos alguns dias depois do acidente ao longo do litoral norte paulista, pela equipe do Instituto Argonauta para Conservação Costeira e Marinha [3]. O Instituto Argonauta atua no trecho compreendido entre os municípios do litoral norte (São Sebastião, Ilha Bela, Caraguatatuba e Ubatuba).

A localização do acidente e dos locais em que tais objetos foram encontrados são apresentados na Figura 1.

Figura 1: Terreno digital simulado pelo MOHID mostrando a localização do acidente e dos pontos onde foram recuperados os objetos pelos técnicos do Instituto Argonauta (São Sebastião, Ilha Bela, Caraguatatuba e Ubatuba).

3.2 Implementação do Modelo

Neste trabalho, foram implementadas uma formulação hidrodinâmica 2D para a simulação do modelo barotrópico e uma formulação hidrodinâmica 3D para o modelo baroclínico. A batimetria foi implementada a partir dos dados fornecidos pelo GEBCO Grid Database [9].

O modelo 2D refere-se ao domínio de maior abrangência geográfica (América do Sul) com resolução horizontal de 0,12 graus e uma única camada sigma vertical. Esta formulação foi forçada na fronteira lateral aberta pelas componentes harmônicas de maré do modelo FES2012 (Finite Element Solution) [5].

A Figura 2, apresenta os domínios simulados neste trabalho.

Figura 2: Área coberta pelo modelo nas diferentes escalas - América do Sul (azul claro - domínio 1), Brasil (azul escuro - domínio 2), Santos (branco - domínio 3) e Ilha Bela (verde - domínio 4).

O modelo 3D abrange o domínio Brasil com resolução horizontal de 0,12 graus e 50

camadas verticais (7 camadas sigmas e 43 camadas cartesianas). A formulação deste nível é forçada na fronteira lateral aberta por dados de salinidade, temperatura e níveis médios diários do modelo "MyOcean" [6] e dados meteorológicos fornecidos pelo "Global Forecast System" (GFS) [10]. As formulações dos níveis 3 (Santos) e 4 (Ilha Bela) são aninhadas de acordo com a metodologia de downscaling e apresentam resolução espacial de 0,024 graus e 0,008 graus, respectivamente. Essas formulações recebem os dados interpolados nas fronteiras laterais, a cada 600 segundos, oriundos do nível imediatamente acima.

4 Resultados e Discussão

4.1 Validação do modelo

A validação do modelo foi obtida pela comparação de 135.000 dados de temperatura superficial obtidos do Projeto "Global Foundation Sea Surface Temperature Analysis", resultando em coeficiente de Pearson R=90,6 %; bem como comparando os perfis de temperatura e salinidade com 13.400 valores mensurados por bóias do programa internacional ARGO presentes na região, resultando valores de R superiores a 99,2 %. Estes resultados correspondem a uma excelente concordância, apesar de toda a dificuldade da modelagem nas escalas realizadas.

4.2 Simulação da Trajetória dos Objetos

Após a definição das condições iniciais, de contorno e batimetria, foram ajustadas as características do transporte dos objetos no módulo Lagrangiano. Neste trabalho foram considerados os objetos com origem pontual (emissão em um dado ponto do espaço). A influência das correntes superficiais e de ventos sobre a trajetória foi considerada em 1:0, i.e. com os objetos totalmente imersos durante a simulação.

A simulação da trajetória dos objetos flutuantes foi realizada para o período de 11 a 23/08/2017. Aplicou-se o algoritmo backtracking, que calcula a trajetória de retorno dos traçadores e é normalmente empregado na detecção de fontes poluidoras [2,7]. Para a trajetória inversa, considerou-se como origem do fluxo as coordenadas onde os objetos flutuantes foram recuperados pelos técnicos do Instituto Argonauta.

A Figura 3, a seguir, apresenta os resultados obtidos para a simulação da trajetória dos objetos entre os dias 15 e 21 de agosto.

5 Conclusões

Em que pese a grande complexidade de sistemas costeiros, modelos computacionais que contemplem todas as forçantes hidrodinâmicas, quando convenientemente acoplados a modelos de transporte, são capazes de reproduzir e até mesmo prever a dispersão de resíduos em tais ambientes. Esse estudo se restringiu à simulação do transporte de objetos flutuantes, portanto, imiscíveis em água, tais como óleo e resíduos sólidos. No entanto, boa parte dos resultados aqui obtidos podem ser estendidos para o transporte de substâncias

Figura 3: Simulação da trajetória dos objetos com aplicação do algoritmo backtracking

em solução, o que atesta a ampla utilização desses modelos como ferramentas de gestão ambiental.

Agradecimentos

Os autores agradecem ao apoio financeiro da FAPERJ, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, do CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, e da CAPES, Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Referências

- C.M.Allen. Numerical simulation of contaminant dispersion in estuary flows. Proc. R. Soc. London. A, 381: 179-194. 1982. DOI: 10.1098/rspa. 1982.0064.
- [2] K.Al-Salem; Y.Alosairi e A.Al-Rashed. Development of a backtracking numerical model for offshore oil spills. Journal of Eng. Research, 5 (1): 1-22. 2017. ISSN: 2307-1877.
- [3] Instituto Argonauta. n.d. Acesso em 19.03.2018. http://institutoargonauta.org.
- [4] F.J.Campuzano; M.Juliano; R.Fernandes e L.Pinto. Downscalling from the deep ocean to the estuarine intertidal areas: an operacional framework for the portuguese exclusive economic zone. In: 6th SCACR – International Short Course/Conference on Applied Coastal Research. pages 1-9. 2013.
- [5] L.Carrère, F.Lyard, M.Cancet, A.Guillot e L.Roblou. FES2012: A new global tidal model taking advantage of nearly 20 years of altimetry, Proceedings of the meeting "20 Years of Altimetry", Venice 2012.

- [6] Copernicus. Marine Environment Monitoring Service. URL:http://marine.copernicus.eu/services-portfolio/access-toproducts/?option=com_csw&task=results (acesso em 20.11.2017).
- [7] R.Fernandes, P.Galvão, F.Lourenço, C.Viegas e R.Neves. Modelação de derrames de poluentes: Desenvolvimento e integração na nova geração de ferramentas de apoio à decisão. In: Anais do 110. Congresso da Água. Porto, 2011
- [8] G.A.S.Franz; P.Leitão; A.dos Santos, M.Juliano e R.Neves. From regional to local scale modelling on the south-eastern Brazilian shelf: case study of Paranaguá estuarine system. *Brazilian Journal of Oceanography*, 64(3): 277-294. 2016. DOI:10.1590/s1679-8759204161165806403.
- [9] General Bathymetric Chart of Oceans (GEBCO). Gridded bathymetry data. URL: https://www.gebco.net/data_and_products/gridded_bathymetry_data (acesso em 20.11.2017).
- [10] Global Forecast System (GFS). GFS Analysis. URL: https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcastsystem-gfs (acesso em 11.20.2017).
- [11] M.C.F.L.Leitão. Modelo de dispersão lagrangeano tridimensional. Tese de Mestrado. Universidade Técnica de Lisboa. Instituto Superior Técnico. 1996.
- [12] R.J.J.Neves e F.A.Martins. Modelação Lagrangeana dos processos de transporte na Ria Formosa. In: 5a Conferência Nacional sobre a Qualidade do Ambiente, Aveiro. 1996.
- [13] J.C.Pimentel e M.Rossi. Contêineres se rompem no mar e produtos eletrônicos e de vestuário se espalham entre duas cidades. URL https://gl.globo.com/sp/santos-regiao/porto-mar/noticia/conteineres-se-rompem-no-mar-e-produtos-eletronicos-e-de-vestuario-se-espalham-entre-duas-cidades.ghtml (accesso em 20.1.18).
- [14] Porto de Santos. Panorama do Porto de Santos. URL http://www.portodesantos.com.br/down/imprensa/panorama (acesso em 10.2.2017).
- [15] Porto de Santos, Porto de Santos bate recorde anual de movimentação. URL http://www.portodesantos.com.br/pressRelease.php?idRelease=1225 (accesso em 2.08.17).
- [16] P.P.G.W.Rodrigues; E.C.Nascimento e J.Lugon Junior. Descrição do MOHID. In Essentia Editora, Campos dos Goytacazes (RJ), 2012. ISBN: 978-85-99968-20-8.
- [17] L.A.S.Ventura. 45contêineres caem de navio na baía de Santos Estadão Economia [WWW Document]. Estadão J.Digit. URL http://economia.estadao.com.br/noticias/geral,45-conteineres-caem-de-navio-nabaia-de-santos, 70001932779 (accesso em 20.1.18).