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Abstract. Marine ice sheets are large masses of glacial ice that terminate in the ocean form-
ing an attached floating ice shelf. The region where the ice start to float is called grounding
line. The evolution of the grounding line plays a major role in marine ice sheet dynamics,
as they are a fundamental control of the marine ice sheet stability. Numerical modeling of
grounding line dynamics requires significant computational resources and the accuracy of its
position depends on grid or mesh resolutions. A technique that can improve accuracy with
reduced computational cost is the adaptive mesh refinement approach. In recent years, this
approach has been applied in ice sheet simulations, but the mesh refinement performed is
not conducted by error estimators. Here, we implement and test the performance of the ZZ
error estimator as a refinement criterion using the Ice Sheet System Model. In the numeri-
cal experiments carried out, the ZZ error estimator presents high values around grounding
line and proves to be a good indicator of which elements should be refined. Our compari-
son results show that computational time using the ZZ estimator depends on the required
accuracy, but for all cases, it is significantly smaller than the uniformly refined meshes cost.
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1 Introduction

Marine ice sheets are large masses of glacial ice that terminate in the ocean forming
a floating ice shelf [10]. The region where the ice start to float is the grounding line.
A schematic geometry of a marine ice sheet is shown in Figure 1. The grounding line
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evolution plays a major role in marine ice sheet dynamics, as they are a fundamental
control of marine ice sheet stability.

Numerical modelling of grounding line dynamics requires significant computational
resources and the accuracy of their positions depends on grid or mesh resolutions. A
technique that can improve accuracy with reduced computational cost is the adaptive
mesh refinement (AMR) approach. Although some works in literature have used this
technique, the refinement performed is not conducted by an associated error estimator.

Here, we apply a posteriori error estimator proposed by Zienkiewicz and Zhu [11] in the
Ice Sheet System Model (ISSM) [6]. The AMR capability in ISSM relies on two different
and independent meshers: Bamg and NeoPZ. Bamg is a bidimensional anisotropic mesh
generator developed by Hecht [5] and embedded in ISSM. NeoPZ is a finite element library
developed by Devloo [2] dedicated to high adaptive techniques. In this work, we use the
NeoPZ package to perform the adaptive mesh refinement.

We test different refinement criteria based on the Zienkiewicz and Zhu (ZZ) error
estimator: 1) error estimator calculated for the ice thickness, 2) error estimator calculated
for the deviatoric stress tensor and 3) combination of criteria 1) and 2). We run the
MISMIP+ [1] experiment using the Shelfy-Stream Approximation [7, 8] to compare the
results obtained with both uniform and adpative meshes as well as the performance of
each criterion in terms of grounding line position accuracy and computational time.
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Figure 1: Schematic vertical plane view of a marine ice sheet and position of the grounding line.

2 Methods

This section describes the governing equations of the Shelfy-Stream Approximation
and ice evolution, the ZZ error estimator implemented and the numerical experiment
setup used to assess the error estimator.
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2.1 Governing equations

The ice sheet evolution is modelled by two sets of equations which are related to
the mass and stress balances. In the Shelfy-Stream Approximation, the mass balance is
represented by the ice thickness evolution:

∂H

∂t
= −div (Hv) + ṁs (1)

where H is the ice thickness, v = [vx vy]T is the vertically integrated velocity field and
ṁs is a source term (accumulation/ablation rate).

The stress balance of the Shelfy-Stream Approximation is vertically integrated and
considers just the the xy-plane velocity field, vx and vy, as follows:

div (2Hµ̄ε̇x)− α2vx = ρgH ∂s
∂x

div (2Hµ̄ε̇y)− α2vy = ρgH ∂s
∂y

(2)

where
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where µ̄ is the vertically integrated ice viscosity, α is the basal friction coefficient, ρ is the
ice density (918 kg/m3), g is the gravitational acceleration, s is the ice surface, b is the
ice base, B is the ice rigidity (temperature dependence), n is the Glen’s law exponent [3]
(usually taken as equal to 3) and ε̇e is the effetive strain rate. The ice viscosity depends
on the temperature and the effetive strain rate, but typically assumes values between 1013

to 1017 Pa s [4]. The terms α2vx and α2vy in Eqs. 2 are the basal friction contributions,
which are null for the floating ice. The boundary conditions are defined as:

v = vD in ΓD

2µ̄ε̇x · n =
(

1
2ρgH

2 − 1
2ρwgb

2
)
nx in Γw

2µ̄ε̇y · n =
(

1
2ρgH

2 − 1
2ρwgb

2
)
ny in Γw

(5)

where n = [nx ny]T is the outward-pointing unit normal vector, ρw is the water density
(1028 kg/m3), ΓD is the Dirichlet contour and Γw is ice-ocean contact contour (Neumann).

The dynamics of grounding line is implemented in ISSM through implicit level set
functions, φGL, which is based on hydrostatic floatation criterion [9], such that:

φGL < 0: ice is floating,
φGL > 0: ice is grounded,
φGL = 0: grounding line position.

(6)
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The resolutions of Eqs. 1 and 2 are performed through the standard approach of finite
element method implemented in the ISSM [6].

2.2 ZZ error estimator

The generic form of the ZZ [11] error estimator ek for a given element k is:

ek =

(∫
Ωk

(∇u∗ −∇u)2 dΩk

)1/2

(7)

where Ωk is the domain of the element k, ∇u is the gradient of the Galerkin solution u
and ∇u∗ is the smoothed gradient. The smoothed gradient is calculated in each vertex i
of the element k using:

∇u∗ =
3∑

i=1

φi∇u∗i (8)

and

∇u∗i =
1

W

n∑
j=1

wj∇uj (9)

where φi is the shape function i, j is the jth element connected to the vertex i, wj is the
weight relative to the element j and W is the sum of all weights for the vertex i. We
implement the ZZ error estimator for ice thickness (H) and deviatoric stress tensor (τ).

2.3 Numerical experiment

We run the third Marine Ice Sheet Model Intercomparison Project MISMIP+ [1] setup
to compare the performance of each criterion in terms of grounding line position accuracy
and computational cost. We run all numerical experiments starting from an initial con-
figuration until a steady state condition is reached, which occurs in 20, 000 years.

3 Results

The spatial distributions of the ZZ error estimators for the deviatoric stress tensor, τ ,
and for the ice thickness, H, are shown in Figure 2. The position of the grounding line at
steady state is also shown in Figure 2. It is notable that the error estimators calculated
for τ present high values around the grounding line. For H, the distribution of high values
is not confined in the region near the grounding line. The positions of the grounding
line obtained using uniform and adaptive meshes are shown in Table 1. We run with 3
refinement criteria using the ZZ error estimator: 1) ZZ for H, 2) ZZ for τ and 3) ZZ for H
and τ . We also run a combination of the estimators (H and τ) with a heuristic approach
where elements near the grounding line are also refined. In this case, we use a distance to
grounding line equal to 5 km within which the elements are refined.
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Table 1: Grounding line (GL) position at y=40 km for different meshes and refinement levels.

Refinement level and criterion No elements GL position (km)

Coarse 6,780 435.6

Level 1, uniform 27,120 447.1

Level 2, uniform 108,480 451.9

Level 3, uniform 433,920 456.3

Level 1, ZZ H 18,597 445.3

Level 1, ZZ τ 15,864 446.8

Level 1, ZZ H and τ 20,791 446.8

Level 2, ZZ H 41,350 449.5

Level 2, ZZ τ 20,891 452.6

Level 2, ZZ H and τ 46,869 451.2

Level 2, ZZ H and τ , and 5 km 47,694 451.8

Level 3, ZZ H 64,507 450.3

Level 3, ZZ τ 21,936 455.3

Level 3, ZZ H and τ 68,596 453.4

Level 3, ZZ H and τ , and 5 km 77,503 455.5

4 Discussion and conclusions

The ZZ error estimators calculated for ice thickness and deviatoric stress tensor present
high values around grounding line. In particular, for ice thickness, the estimator also
presents high values in the grounded part of the ice sheet: these follow the high gradient
region of the bedrock topography.

Using a combination of the error estimators for both ice thickness and deviatoric
stress tensor generates more elements than using individual estimator, as expected. Using
the estimator for the deviatoric stress tensor produces accurate results in comparison
to uniform meshes, but with less elements. The use of the estimator for ice thickness
improves the bedrock geometry description, but it is not enough to generate same results
in comparison to the other criteria. The combination of the estimators with the heuristic
approach produces more elements in comparison to the others, but it is the most accurate
among the criteria used here.

Our comparison analysis shows that computational time with adaptive mesh refinement
depends on the required accuracy, but for all cases, it is significantly smaller than the
uniformly refined meshes cost. To illustrate, for a 500-year run and time step of 1 year,
the uniform mesh (level 3) takes approximately 4,800 seconds. For the same level and
refining every time step, the adaptive mesh using ZZ for both ice thickness and deviatoric
stress tensor takes 2,900 seconds. Both tests are performed in parallel (16 cores) in an
Intel Xeon E5-2630 v3 2.40GHz.
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Figure 2: Top: spatial distribution of the ZZ error estimator calculated for the deviatoric stress, τ .

Bottom: spatial distribution of the ZZ error estimator calculated for the ice thickness, H. White

lines: MISMIP+ coarse mesh used as initial mesh for all experiments. Black line: grounding line

position at steady state.
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