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Abstract. This paper evaluates the original Hager’s adjacent exchange methods in conjunc-
tion with heuristics for bandwidth and profile reductions with the objective of reducing com-
puting times of the zero–fill incomplete Cholesky–preconditioned conjugate gradient method.
The numerical results obtained in this computational experiment show that the original
Hager’s exchange methods, although capable of reducing the profile of the instances, are not
useful when reducing processing times of the zero–fill incomplete Cholesky–preconditioned
conjugate gradient method.
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1 Introduction

A fundamental step in various applications in science and engineering is the solution of
large-scale sparse linear systems in the form Ax = b, where A is an n×n large-scale sparse
matrix, x is the unknown n–vector solution which is sough, and b is a known n–vector.
Generally, it is a step in the simulation that demands a high computing time.

Paging policies and modern hierarchical memory architecture favor programs that
consider locality of reference into account [4]. An appropriate vertex labeling is desirable
for the low–cost solution of large-scale and sparse linear systems. An adequate vertex
labeling provides that the corresponding coefficient matrix A will have narrow bandwidth
and small profile [4]. Furthermore, this does not depend on the storage scheme used to
represent the matrix. Thereby, the use of a heuristic for bandwidth and profile reductions
is an alternative to achieve a sequence of graph vertices with spatial locality. Heuristics for
bandwidth and profile reductions are employed to obtain low computing times for solving
large-scale sparse linear systems [4].

Let A = [aij ] be an n × n symmetric matrix associated with an undirected graph
G = (V,E) composed of a set of vertices V and a set of edges E. The band-
width of row i is βi(A) = i − min

1≤j≤i
[j : aij 6= 0]. The overall bandwidth β(A) is de-

fined as β(A) = max
1≤i≤n

[βi(A)]. Equivalently, the bandwidth of G for a vertex labeling
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S = {s(v1), s(v2), · · · , s(v|V |)} (i.e., a bijective mapping from V to the set {1, 2, · · · , |V |})
is β(G) = max[(v ∈ V ) ({v, u} ∈ E) |s(v) − s(u)|]. The profile of A can be defined as
profile(A) =

∑n
i=1 βi(A) (or equivalently, profile(G) =

∑
v∈V

[({v, u} ∈ E) |s(v) − s(u)|]).

The problems of bandwidth and profile minimizations are NP-hard [8, 10].

A prominent method for solving large sparse linear systems is the conjugate gradi-
ent method (CGM), used when the coefficient matrix is symmetric and strictly diagonally
dominant. Among several preconditioners that researchers have proposed (e.g., see [3]) for
the conjugate gradient method, the incomplete Cholesky (IC) factorization is especially
important (see [4] and references therein). IC(l) with l > 0 will yield a better approx-
imation to A than IC(0) at the cost of increased storage and processing times so that
we employed the IC(0) preconditioner. In particular, practitioners have been successfully
applying the zero–fill incomplete Cholesky–preconditioned conjugate gradient (ICCG for
short) method in the solution of several problems (see [4] and references therein).

A previous publication [4] evaluated several heuristics for bandwidth and profile re-
ductions when applied to various large-scale instances contained in the SuiteSparse matrix
collection [1] with the objective of reducing the ICCG method. This publication [4] indi-
cated the most promising heuristics for each of the instances. Hager’s adjacent exchange
methods [5] were proposed to deliver further profile reductions in matrices after the use
of a heuristic for profile optimization. This paper evaluates these methods in conjunction
with heuristics for bandwidth and profile reductions to verify whether Hager’s adjacent
exchange methods [5] along with state-of-the-art heuristics for bandwidth and profile re-
ductions can reduce execution times of the ICCG method. To the best of our knowledge,
this is the first (published) instance in the field to evaluate Hager’s exchange methods
along with heuristics for bandwidth and profile reductions with the objective of reducing
the execution times of the preconditioned conjugate gradient method.

The remainder of this manuscript is structured as follows. Section 2 gives a brief
description of Hager’s adjacent exchange methods. Section 3 describes how we conducted
the experiments in this computational experiment. Section 4 presents and analyzes the
results. Finally, Section 5 provides the conclusions.

2 A brief description of Hager’s adjacent exchange methods

Hager proposed the down and up exchange methods [5], which, in short, perform
symmetric permutations of rows and columns in a matrix to reduce its profile. The down
exchange algorithm is first applied, followed by the up exchange algorithm, and they are
executed alternately for a number of times previously defined.

To save space, we give only a brief notion of Hager’s adjacent exchange methods below.
Considering an n × n matrix A and k < l ≤ n, let Dk:l(A) = |{j ≥ k : k < fj(A) ≤ l}| −( ∑

j∈Fk

(min {l, gj(A)− 1} − k)

)
, where fi(A) = min{j : 1 ≤ j ≤ i,with aij 6= 0}, Fk =

{j : fj(A) = k} is the set of columns in line k, and gi(A) = min {j : fi(A) < j, aij 6= 0} is
the second non-null coefficient in column j, if it exists, or gj(A) = n+1 otherwise [5]. This

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 6, n. 2, 2018.

DOI: 10.5540/03.2018.006.02.0248 010248-2 © 2018 SBMAC

http://dx.doi.org/10.5540/03.2018.006.02.0248


3

formula denotes the change in the profile associated with a series of adjacent exchanges,
i.e., interchange row k with k + 1, row k + 1 with k + 2, ..., row l− 1 with l, and perform
the symmetric interchange of columns. The elements of the frontier set Fk are adjacent
vertices to k and on the boundary of the envelope. Based on this formula, Hager [5]
proposed the adjacent exchange methods. From the bottom of the matrix, these methods
identify a set of lines whose adjacent down interchanges provide the smaller increase in
profile and performs the corresponding interchanges if this increase is negative. For each
value of k ranging from n−1 to 1, this algorithm chooses a value L, with k < L ≤ n, which
provides the smaller result in Dk:l, calculating Dk:L < 0. After selecting L, if it exists,
this algorithm performs the adjacent down interchanges between lines k and L. Then, the
procedure performs similar symmetric up adjacent interchanges.

3 Description of the tests

Sloan’s [12] and NSloan [7] heuristics have important parameters that may influence
the results. We use the parameters recommended by the heuristics’ authors, i.e., w1 = 1
and w2 = 2 corresponding respectively to global and local criteria related to the distance
of each vertex from the target end vertex and related to the degree of each vertex within
Sloan’s [12] heuristic; and w1 = 2 and w2 = 1 within the NSloan heuristic [7]. The other
heuristics do not have parameters that affect the results [4].

The results obtained using the KP–band heuristic [6] are highly dependent on the
choice of a starting vertex of the labeling. Koohestani and Poli [6] did not describe the
pseudo-peripheral vertex finder employed. Then, we applied the George-Liu algorithm
(see [2] and references therein) to find a pseudo-peripheral vertex to be the starting vertex
of this reordering algorithm.

We used the C++ programming language to write the heuristics. In a previous publi-
cation (see [4] and references therein), we describe the testing and calibration performed to
compare our implementations with the original heuristics. We used a data structure based
on the Compress Row Storage, Compress Column Storage, and Skyline Storage Scheme
data structures to implement the zero–fill incomplete Cholesky–preconditioned conjugate
gradient method [4].

The workstations used in the execution of the simulations with instances of the SuiteS-
parse matrix collection [1] contained an Intel R© CoreTM i7-4770 (CPU 3.40GHz, 8MB
Cache, 8GB of main memory DDR3 1.333GHz) (Intel; Santa Clara, CA, United States).
In this machine, we use an Ubuntu 14.04.4 LTS 64-bit operating system with Linux kernel-
version 4.2.0-36-generic.

Our procedure employs a precision of 10−16 using double-precision floating-point arith-
metic to the preconditioned conjugate gradient method. If the procedure does not achieve
this precision, the preconditioned conjugate gradient method stops when the number of
iterations is the size of the instance.
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4 Results and analysis

This section presents and analyzes the results obtained in simulations using the ICCG
method computed after executing heuristics for bandwidth and profile reductions and
Hager’s adjacent exchange methods [5]. Specifically, this section shows the results obtained
from the solutions of linear systems (ranging from 60,000 to 141,347 unknowns) contained
in the SuiteSparse matrix collection [1].

Table 1 shows the instance’s name, its size (|V |) and number of non-null coefficients
(|E|), the name of the heuristic for bandwidth and profile reductions, the results with
respect to bandwidth and profile reductions, the results of the algorithms in relation to
execution times, in seconds (s), including times obtained by Hager’s adjacent exchange
[5] and the ICCG methods. Additionally, the first line of each instance presented in
this table shows the results for linear systems solved using the ICCG method without
applying a reordering algorithm. These lines are indicated by the symbol “—” in this
table. With this result, one can verify the speed-up (or speed-down) (i.e., the time of
the ICCG method without applying a reordering algorithm divided by the time of the
ICCG method executed in conjunction with reordering algorithms) of the ICCG method
provided when applying reordering algorithms. The last column of this table shows these
speed-ups/downs. Numbers in boldface are the best results.

Table 1 also shows the results obtained by the heuristic for bandwidth and profile
reductions that reached the best results in a specific instance [4]. The RCM–GL [2],
Sloan [12], MPG [9], NSloan [7], KP–band [6], or RBFS-GL [4] heuristics were applied to
these instances. Then, our implementation employs Hager’s adjacent exchange methods [5]
in conjunction with this heuristic for bandwidth and profile reductions. Our executions
perform only one iteration of Hager’s (down and up) adjacent exchange methods [5] with
the objective of reaching low execution times.

Table 1 shows that Hager’s adjacent exchange methods [5] are effective in reducing
the profile of matrices (see column Profile in this table). Except when applied to the
qa8fm instance, Hager’s adjacent exchange methods [5] reduced the profile of matrices
when computed after a heuristic for bandwidth and profile reductions. Even applying
only one iteration (down and up), Hager’s exchange methods reduced on average 10% the
profile of the matrices resulting from the heuristics for bandwidth and profile reductions
evaluated. Thereby, more iterations might provide further profile reductions of the in-
stances at higher computing times. In general, the use of a heuristic for bandwidth and
profile reductions without using Hager’s adjacent exchange methods [5] reduced executions
times of the ICCG method (see column ICCGM in Table 1). In simulations with four in-
stances (thermal1, 2cubes sphere, thermomech TC, and boneS01 ), the execution times of
the ICCG method was even lower when applying Hager’s adjacent exchange methods [5].
In the case of solving the linear system multiple times, the iterative process would amortize
the processing times of Hager’s adjacent exchange method. However, Figure 1(a) shows
that the execution times of Hager’s adjacent exchange methods [5] are in general much
higher than the execution times of the ICCG method. The objective is to minimize the
total computing time of the simulation, including the execution time of the heuristic for
bandwidth and profile reductions and Hager’s adjacent exchange methods, at least when
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Table 1: Results from the solution of 10 linear systems contained in the SuiteSparse matrix
collection [1] using the ICCG method and vertices labeled by heuristics for bandwidth and
profile reductions and Hager’s adjacent exchange methods (EM) [5].

Instance Algorithm β Profile heur. EM IC(0) CGM ICCGM Iter. Sp.
Andrews — 59925 1501971521 — — 28 630.29 658 60000 —
|V | = 60000 MPG 51374 113418624 0.9 — 33 467.14 500 60000 1.31
|E| = 760154 MPG+EM 53344 103809612 1.1 901 34 523.00 557 60000 0.45

qa8fm – 1048 64862523 — — 196 0.46 196 21 —
|V | = 66127 RBFS-GL 2016 76755688 0.1 — 66 0.14 67 18 2.95
|E| = 1660579 RBFS-GL+EM 2778 77260043 0.1 1068 70 0.20 71 18 0.17

thermal1 – 80916 175625317 — — 65 101.00 166 8643 —
|V | = 82654 MPG 1448 10403099 0.2 — 55 6.60 62 577 2.68
|E| = 574458 MPG+EM 1310 10081742 0.2 777 49 5.30 54 616 0.20
2cubes sphere — 100407 483241271 — — 195 0.30 196 13 —
|V | = 101492 KP–band 4927 353914520 0.3 — 192 0.20 193 13 1.01
|E| = 1647264 KP–band+EM 11546 217022477 0.3 3049 151 0.23 151 12 0.06

thermomech TC — 102138 2667823445 — — 98 0.40 99 20 —
|V | = 102158 Sloan 1032 16021130 0.3 — 96 0.30 96 16 1.02
|E| = 711558 Sloan+EM 1725 15258586 0.3 1468 89 0.19 89 16 0.06

thermomech TK — 102138 2667823445 — — 75 350.00 425 23417 —
|V | = 102158 NSloan 2799 15493278 1.1 — 80 73.60 154 7911 2.74
|E| = 711558 NSloan+EM 2785 15211001 1.2 1475 88 98.70 187 8606 0.26

cfd2 — 4501 156107322 — — 336 2202.00 2538 123440 —
|V | = 123440 Sloan 1176 139135583 0.9 — 337 0.04 337 1 7.50
|E| = 3085406 Sloan+EM 1015 134876558 0.9 3197 341 0.05 341 1 0.72

boneS01 — 3722 331330356 — — 759 59.30 818 1309 —
|V | = 127224 KP–band 8077 588599769 1.0 — 741 31.00 772 684 1.06
|E| = 5516602 KP–band+EM 8912 410207049 0.6 7963 609 16.00 625 598 0.10

shipsec1 — 5237 431771001 — — 583 23.94 607 960 —
|V | = 140874 RBFS-GL 5879 451937073 0.2 — 576 0.05 576 1 1.05
|E| = 3568176 RBFS-GL+EM 5963 449908701 0.2 9303 791 0.07 791 1 0.06

bmw7st 1 — 121856 1371669955 — — 534 3526.70 4061 141347 —
|V | = 141347 RCM–GL 3652 289187078 0.5 — 556 0.10 556 1 7.30
|E| = 7318399 RCM–GL+EM 12454 272733259 0.6 7871 765 0.08 765 1 0.06

the process solves only a single linear system [4]. Our implementation of Hager’s exchange
method was on average almost four times slower than the ICCG method. For instance,
when applied to the 2cubes sphere instance, where Hager’s exchange methods delivered
reasonable results in reducing the execution time of the ICCG method (i.e., 151s against
193s yielded by executing the KP–band heuristic [6] alone), the computing time of Hager’s
exchange methods was higher (3049s) than executing the ICCG method alone (196s). It
would take

⌈
3049s+151s

193s

⌉
= 22 executions of the ICCG method in conjunction with the

KP–band heuristic to amortize the time of Hager’s exchange methods. Table 1 and Figure
1(b) show that the use of heuristics for bandwidth and profile reductions obtained better
results to reduce execution times of the ICCG method than using them along with Hager’s
adjacent exchange methods [5] (see column Speedup in Table 1).
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(a) (b)

Figure 1: Results of the ICCG method along with heuristics for bandwidth and profile
reductions and Hager’s adjacent exchange methods [5] applied to 10 symmetric instances
contained in the SuiteSparse matrix collection [1]: a) execution times obtained by the
ICCG and Hager’s adjacent exchange methods (EM); b) speed-up/down of the ICCG
method obtained when applying heuristics for bandwidth and profile reductions with (EM)
and without (w/o) the use of Hager’s adjacent exchange methods.

5 Conclusions

This paper shows simulations using 10 symmetric instances contained in the SuiteS-
parse matrix collection [1] with the objective of reducing execution times of the zero–
fill incomplete Cholesky–preconditioned conjugate gradient method. A previous publi-
cation [4] exhibited the heuristics for bandwidth and profile reductions that achieved the
best speedup when applied to each of these instances. Our simulations applied the selected
heuristic to the specific instance to verify the speedup of the ICCG method provided by
the heuristic. Afterward, a simulation employed the same heuristic for bandwidth and
profile reductions along with Hager’s adjacent exchange [5] and ICCG methods to the
same instance. This simulation is performed to verify whether the speedup of the ICCG
method could be improved. However, even one iteration of Hager’s (down and up) adja-
cent exchange methods [5] is more time consuming than the ICCG method. The results
obtained in this computational experiment show that Hager’s adjacent exchange meth-
ods [5], although capable of reducing the profile of the instances, are not useful when used
to reduce computing times of the ICCG method.

It is well-known that the ICCG method executes with a lower number of iterations and
computing times when the condition number of the matrix is small (or the instance presents
a better cluster of eigenvalues). Spatial locality significantly improves the computing
time of the ICCG method (see [4] and references therein). In this context, with the
simulations carried out in this paper, we suppose that the use of an expensive local search
employed to reduce bandwidth or profile of matrices does not favor the computing time of
a linear system solver because of the high running times of the procedure. Specifically, this
paper reveals that the computing times to perform Hager’s adjacent exchange methods [5]
increase the total running time of a simulation when applying an iterative system solver.
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Reid and Scott [11] showed a low-cost Fortran implementation of Hager’s exchange
methods. We plan to evaluate this implementation with the same objective of reducing
the execution times of the ICCG method in future studies.

Also as a continuation of this paper, we intend to implement and evaluate other pre-
conditioners in conjunction with the conjugate gradient method. Additionally, we plan to
implement parallel approaches to the above methods.
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