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Abstract: A numerical solution of the initial behavior of free surface liquid flows on inclined
planes is presented. These instabilities, under some conditions, may evolve to surface-wave,
that often appear on thin liquid films. Liquid films help us to remove the heat from solid sur-
faces, and also reduce the friction between high viscosity fluids and pipe walls, among other
applications; therefore, understanding and predicting this behavior is useful in industry.
The surface-waves instability phenomena are governed by the Orr-Sommerfeld equation and
their boundary conditions. In this work we present a study through a numerical approach
of the Orr-Sommerfeld equation. The numerical solution was based on a Galerkin method
using Chebyshev polynomials for the discratization, which made it possible to express the
Orr-Sommerfeld equation and their boundary conditions as a generalized eigenvalue prob-
lem. The method is compared with previous works for validation. The solution gives the
critical conditions in which the liquid film turns unstable, and describes possible features
that produce these instabilities. All codes, data and plots were produced in the MATLAB
environment.

Keywords: Surface waves, Orr-Sommerfeld equation, Galerkin Method, Chebyshev Poly-
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1 Introduction

This work is devoted to the initial behavior of liquid films flowing over an inclined
plane. Instabilities often appear on the free surface of liquid flows. Such knowledge is
useful in industrial applications, once liquid films help us to remove, or increase, heat
and mass transfers from solid surfaces, such as in reactors cooling processes. Friction
reducing effects are also important. The surface-wave instabilities are governed by the
Orr-Sommerfeld equation [7,9] and their boundary conditions. As boundary conditions of
the problem, it was considered the no-slip condition at the wall, kinematic condition of the
interface and dynamic condition of the interface. To obtain the Orr-Sommerfeld equation,
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the authors introduced perturbations in the form of a stream function in the Navier-Stokes
equation, as done by [11], then used normal modes for these functions. Similar approach
for the development of the Orr-Sommerfeld equation can be found in [8]. After a lin-
earization of the perturbations, we obtain the Orr-Sommerfeld equation. For the final
form of the boundary conditions the same procedure is applied. The numerical solution
was based on a Galerkin method [5] using Chebyshev polynomials for the discretization,
which made it possible to express the Orr-Sommerfeld equation and their boundary con-
ditions as a generalized eigenvalue problem. All those choices were made because of the
general approach provided by the Galerkin method, which makes the implementation of
the boundary conditions of free surface easier, and the high accuracy of the Chebyshev
polynomials. A code was implemented in Matlab to solve the eigenvalue problem using a
QZ algorithm. The main goal of this work is to reach the critical conditions in which the
liquid film flow turns unstable, and to express the results in terms of the dimensionless
groups Reynolds and Froude. The results are compared with previously published data.

2 Formulation of the problem and the Orr-Sommerfeld equa-
tion

The development of the momentum equations presented next are based on [4]. It was
considered a film of incompressible Newtonian fluid of viscosity µ, density ρ, and thickness
h, falling down on a inclined plane with an angle θ with respect to the horizontal. The
interface between the liquid and the gas has a surface tension γ and no surfactants are
present. The pressure applied by the gas on the interface is P0. For the base state the
interface H(x, y, t) and the position of the interface η(x, t) are both planar. Based on the
Navier-Stokes equations and considering the boundary conditions of permanent flow, non-
slip at solid surface, no shear, constant pressure at the liquid-gas interface and without
presence of a gradient temperature, a solution corresponding to a steady parallel flow, with
a planar interface and parabolic velocity profile, was found. The velocity of the interface
U0, present in the velocity profile, is given by,

U0 =
ρgh2sin(θ)

2µ
(1)

The contribution of inertia related to viscosity, gravity, and surface tension are mea-
sured, respectively, by the Reynolds, Froude, and Weber numbers. The solutions are given
in terms of the parameters h, ρ and U0. The dimensionless groups are defined as:

Re =
ρU0h

µ
, Fr =

U2
0

ghcos(θ)
=
Re tan(θ)

2
, We =

ρU2
0h

γ
(2)

The Froude number is defined using the gravity component gcos(θ) normal to the
flow and γ is the surface tension. When the interface is perturbed (η(x, t) 6= 0), the
velocity profile no longer has an exact parabolic behaviour. This, combined with inertia,
leads to surface waves instabilities. In order to find the critical conditions for these waves
and reach the Orr-Sommerfeld equation, and the boundary conditions of the problem, it
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was considered only two dimensional perturbations. This choice is based on the Squire’s
theorem which sets that [3],

Theorem 2.1. To obtain the minimum critical Reynolds number it is sufficient to consider
only two-dimensional disturbances.

This theorem remains valid for a flow with interface [6]. It was considered only the
two-dimensional case for the Navier-Stokes and the continuity equations, and first order
perturbations as well. For the perturbations, stream functions were used, and a cross
differentiation between the equations of motion, for x and y components, was applied.
The normal mode for the stream functions is given by,

Ψ(x, y, t) = Ψ̂(y)eiα(x−ct) (3)

where c = ω
k ∈ C, α = kh ∈ R, k is the wave number; therefore, α is the characteristic wave

number of the problem, and ω is the frequency. Using Ψ(x, y, t) and making the contraction
of notation for D = ∂

∂y , we obtain the Orr-Sommerfeld Equation in dimensionless form,
given by:

(D2 − α2)2Ψ̂(y) = iαRe[(U − c)(D2 − α2)−D2U ]Ψ̂(y) (4)

For the boundary conditions of the problem, which are, wall condition, kinematic
condition of the interface and dynamic condition of the interface, the same procedure used
for Orr-Sommerfeld equation was applied. The wall condition is given by:

DΨ̂(−1) = 0 (5)

Ψ̂(−1) = 0 (6)

The kinematic condition is a function of η(x, t) and Ψ(x, y, t); therefore, its necessary
to consider the normal mode for the interface position η(x, t), as done in Eq. (3). After
applying a linearization around y = 0, was found,

Ψ̂(0)− (c− 1)η̂ = 0 (7)

where η̂ is the amplitude of deformation of the interface. The dynamic condition at the
interface has two parts. The first condition is the continuity of the tangential stress,
associated with the viscous stress of the fluid. The second one is the continuity of the
normal stress associated with the surface tension. Reducing the effect of air to a purely
normal stress, applying the normal modes and linearizing around y = 0, we obtain:

D2Ψ̂(0) + α2Ψ̂(0) + η̂D2U(0) = 0 (8)

−D3Ψ̂(0) + [3α2 − iαRe(c− 1)]DΨ̂(0) + iαRe

[
1

Fr
+

α2

We

]
η̂ = 0 (9)
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3 Numerical approach

For the numerical solution the authors implemented a Galerkin method using Cheby-
shev polynomials of the first kind, known as Tn, for the discretization. In order to im-
plement the method it is necessary transfer the problem domain to the interval [−1; 1],
because of the orthogonal properties of the Chebyshev polynomials in this interval. The
transformation applied was, z = 2y + 1 for y ∈ [−1; 0]. Rearranging the boundary condi-
tions in order to eliminate η̂ and tanking Ψ̂(z) as an approximation given by,

Ψ̂(z) =
N∑
k=0

akTk(z); k ∈ {Z | k ≥ 0} (10)

it is possible to write the Orr-Sommerfeld equation in terms of the inner products required
in the Galerkin method. After this process, we can rewrite the problem as an eigenvalue
problem in the form,

[A]NxN~a = c[B]NxN~a (11)

where N is the number of Chebyshev polynomials to be used and the matrices A and B
can be written respectively as A = Ar + iAi and B = Br + iBi. To apply the boundary
conditions the authors used the same approximation given by Eq. (10) for z = −1 for
wall conditions and z = 1 for the interface conditions, and then replaced the last lines
in the Eq. (11) with the transformed boundary conditions. In the Galerkin method it
is possible to use the boundary conditions as line vectors in the final matrices, making
the implementation easier. The choice of using Chebyshev polynomials was made because
of their high accuracy, and their orthogonal properties, which makes the implementation
easier. A code was written in the MATLAB environment to solve the Eq. (11). We used
the function ’eig’ which uses a Cholesky factorization or a generalized Schur decomposition
(QZ algorithm) based on the properties of A and B. If A and B are symmetric, the
standard choice will be the Cholesky factorization, otherwise the software will implement
the QZ algorithm. All codes implemented in this work were made using a number of
Chebyshev polynomials equal to 80, except those present in table 1.

4 Discussion and results

As was mentioned in section 2, c ∈ C; therefore, c = cr + ici were cr and σ = αci
are the phase velocity and the growth rate of the wave respectively. If ci < 0 the system
is stable, and if ci > 0 the system is unstable, following the formulation adopted for the
normal modes in this work. This approach treats the wave as a small perturbation, which
will provoke an instability at the interface. Therefore, our main focus is to find the critical
conditions for the growth rate σ, and the parameters that provoke these conditions. For
the validation of the numerical method the authors used as reference a physical problem
considered by [1]. For the implementation the following values were used θ = π/3, α =
0.01, We = 0.0001, Re = 1, the results are shown in table 1. All numerical results were
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obtained using 16 Chebyshev polynomials, and it is possible to see good agreement between
both works. These results were obtained after a convergence of the physical eigenvalue,
shown in table 1.

For the growth rate σ(α) presented in Fig. 1, the following properties were used
µ = 0.001Ns/m2, ρ = 998.2071Kg/m3, g = 10m/s2, T = 20oC, 0.1 mm thickness and
γ = 0.07275N/m as referenced in [10]. This figure shows the behaviour of the growth
rate, as a function of α, for different values of the Froude number, with Frc = 0.6250 and
θc = 26, 40o, for the range 22, 5o < θ < 31o.

Figure 2 presents the behaviour of the growth rate as a function of the Reynolds
number, with Rec = 1, 9262 and the corresponding growth rate σ = −1, 5914.10−9, for the
range 1 < Re < 2. Figure 3 shows the stability diagram which separates the stable and
unstable regions. The values shown close to each line represents the growth rate value σ
of each line. The positive values represent the unstable region and the negative values the
stable region, and they are limited by the neutral curve that represents σ = 0. The onset
of the unstable band appears at Rec = 1, 9262 and σ = −1, 5914.10−9, the same values
from Fig. 2. For both figures, it was considered α = 0.01, θ = π/3, We = 0.0001.

Table 1: Value of the physical eigenvalue based on the number of Chebyshev polynomials used.

The results were compared with previous work for the validation of the method [1].

N 4 5 6 8 12 16

cr 1,999756 1,999820 1,999818 1,999818 1,999818 1,999818

ci -0.051849 -0.301656 -0,185036 -0,185036 -0,185036 -0,185036
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Figure 1: Behavior of the growth rate σ(α) for Fr < Frc and Fr > Frc. The dotted line

represents the growth rate for the critical Froude number.
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Figure 2: Behavior of the growth rate σ(Re) for the numerical solution.
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Figure 3: Stability diagram as a function of the Reynolds number for the interval 1 < Re < 100.

5 Conclusion

With the Galerkin method it was possible to find, as shown in Fig. 2, the critical
Reynolds number, which determines a critical condition when the inertial effects dominates
the flow and the liquid film becomes unstable. This critical point has major importance
once, after reaching the critical conditions, the flow patterns can change to other patterns
less, or more, desirable than the previous one. As was presented in the stability diagram
of the Fig. 3 for the Reynolds number, if the inertial effects increase, the unstable band
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tends to increase. It was also possible to find other curves for the growth rate besides
the neutral curve (σ = 0) in the instability diagram. This method shows itself as a good
alternative to implement complex boundary conditions in an easier way in order to solve
stability problems.
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