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Abstract. Image segmentation is an indispensable tool to enhance the ability of computer
systems to perform elementary cognitive tasks such as recognition and tracking. In particu-
lar, graph-based algorithms have gained a lot of attention lately, specially due to their good
performance in clustering complex images and easy usability. However, most traditional
approaches rely on sophisticated mathematical tools whose effectiveness strongly depends
on how good the boundaries reflect the partitions of the image. In fact, sharp adherence
to the contours of image segments, uniqueness of solution, high computational burden, and
extensive user intervention are some of the weaknesses of most representative techniques.
In this work we proposed two novel graph-based image segmentation techniques that sort
out the issues discussed above. The proposed methods rely on Laplace operators, spectral
graph theory, and optimization approaches towards enabling highly accurate segmentation
tools which demand a small amount of user involvement while still being mathematically
easy-to-handle and computationally efficient. The effectiveness of our segmentation algo-
rithms is attested by a comprehensive set of comparisons against state-of-the-art methods.
As additional contribution, we have also proposed two new techniques for image inpainting
and photo colorization, both of which rely on the accuracy of our segmentation apparatus.
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1 Introduction

Segmentation is the key task for an enormous quantity of computer vision problems. A
typical procedure in image segmentation is to interpret an image as a graph, which enables
the use of powerful mathematical tools such as Laplace operators and spectral graph
theory in the context of segmentation. Moreover, the flexibility introduced by a graph
representation as to pixel connectivity and edge weighting greatly increases the capability
of segmentation algorithms to distinguish patterns, structures, and shapes. However,
outperforming human skills in terms of pattern recognition is a challenging task. Therefore,
semi-supervised segmentation methods have become a trend by combining the human
ability for patter recognition with the solid mathematical foundation of graph theory [1].

In this context, the use of interact mechanisms to properly settle Laplacian-based op-
erators on image graph representations have proven to be an effective alternative [2, 3].
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The segmentation is accomplished by either optimizing a cost function [4,5] or by solving
a spectral-cut problem [2, 6]. Despite their pliability and powerful, most state-of-the-art
methods often produce segmentations with low adherence to the contours of the image
segments, failing to capture fine details and thus producing a low quality result [7]. More-
over, most existing techniques rely on sophisticated optimization resources that require
high processing effort while being sensitive to edge weights and user intervention.

Contributions.

In this work we proposed two novel user-assisted image segmentation techniques that
address the issues discussed above. The proposed algorithms rely on Laplace operators,
spectral graph theory, and optimization tools towards reaching highly fitting on object
boundaries which demand a reduced amount of user involvement while still being mathe-
matically easy to solve and computationally efficient. While most of our research has been
focused on the particular problem of segmentation, we developed as side results new meth-
ods for the problem of inpainting [8] and photo colorization [9], both of which derived from
the previous segmentation methodologies combined with PDE-based approaches. The list
below provides the main publications originated during the development of the PhD work:

Contributions in Graph Clustering & PDE-based Models for Images: [2,5,8–14].

Contributions in Optimization & Multidimensional Data Analysis: [15–18].

2 Spectral Image Segmentation

Spectral graph theory [1] has been the basic tool for the so-called spectral cut method-
ology [6, 19], which exploits the eigenstructure of an image affinity graph so as to per-
form clustering. Among the vast amount of techniques inspired in spectral cuts, three
approaches have gained popularity in recent years, being widely used as source of segmen-
tations in many practical applications: Spectral and Normalized Cuts [6, 20], Multiscale
Spectral Segmentation [19, 21, 22], and Random Walker Segmentation [4]. Despite their
effectiveness, those approaches typically present some weaknesses that must be observed
when performing segmentation. For example, the accuracy in detecting the boundaries
between image regions is highly dependent on the weights assigned to the edges of the
graph [6, 19]. Another important issue involving spectral cuts is the numerical cost, as
computing eigenstructures of a graph is a very time consuming task [22].

2.1 Spectral Segmentation via Cartoon-Texture Decomposition

In this section we brief describe the image segmentation technique proposed in [2,11],
which relies on spectral cuts but address the issues raised above. The proposed approach
holds attractive properties such as awareness to noise and texture, accuracy in detecting
image edges, low computational cost and it operates with a reduced number of human
intervention. Our approach comprises four main steps, as presented below.

Cartoon-Texture Decomposition. It separates the target image I into two disjoint
images, C and T , so that I = C+T . The cartoon component C holds the geometric struc-
tures and smooth-parts of I while the texture component, T , contains textures and noise.
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Similar to [23], where a functional minimization problem was formulated through a system
of partial differential equations, both cartoon and texture components are computed by
solving the following system of equations, where T =div(g1, g2):




C = I − ∂xg1 − ∂yg2 +
1

2λ
div

(
∇C
|∇C|

)

µ
g1√

g21 + g22
= 2λ

[
∂
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xxg1 + ∂2
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]
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Affinity Graph Construction. This step consists in building the similarity graph G
by associating each pixel from C to a node of the graph, connecting them according to
the distance between corresponding pixels [2]. The weight wij assigned to each edges is
derived from the proposed inner product metric:

wij=
1

1 + ηh2ij
, hij=max
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∂
−→
dij

,
∂C(Pj)

∂
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, 0

}
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∂
−→
dij

= 〈∇C(x),
−→
dij〉,

−→
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−−→
PiPj

|−−→PiPj |
, (1)

where η > 0 is a tunning constant. The directional derivative of C in Eq. (1) considers the

variation of the image in the directions defined by the edges of G, that is,
−→
dij and

−→
dji.

Spectral Cut Partition. The spectral decomposition is carried out in this stage. More
specifically, given the affinity graph G built from C, we first decompose the graph Laplacian
matrix as L = D−W, where D and W contain the diagonal and off-diagonal elements of
L. Then, the Fiedler vector f is obtained by solving the generalized eigenvalue problem

(D−W)x = λDx, (2)

getting f as the eigenvector associated to the smallest non-zero eigenvalue. The Fiedler
vector splits C into two subsets, one containing the pixels corresponding to nodes of the
graph where the entries of f are positive and other containing the pixels with negative
values of f . For multiple partitions, the process is recursively performed until reaching the
pre-defined number of clusters. Figure 1 portrays the spectral cut procedure.

________
____________

f =

____________________Fiedler vectorAffinity matrix Solution of the Eigenproblem________
____________D L-1

________
____________U -1____

V 
________
____________U 

____= 

Figure 1: Spectral cut pipeline to partition the image from the zero-set of f .

User Interactivity. The user can interactively change the partition initially obtained
by stroking the resulting segmentation (see Figure 2). This step is performed by combining
the texture component T initially generated in the Cartoon-Texture decomposition stage
with a recent technique of harmonic analysis [24] aiming at incorporating the remaining
high-level oscillatory information into the spectral cut process. See [3] for details.
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2.2 Experimental Results and Evaluations

We evaluate the performance of the proposed methodology by means of quantitative
and visual analysis against two spectral segmentation state-of-the-art methods: k-way Nor-
malized Cuts method (NCut) [6], and Multiscale Normalized Cuts method (MS-NCut) [19].
To accomplish the numerical evaluation, we make use of Success Rate (Precision) and
F-Score measures [3] on the well-known Berkeley Segmentation Dataset (BSDS), which
provides 300 natural images with their human-drawn ground-truth segmentations. For a
few illustrations and the measurements accomplished on BSDS dataset, see Figure 2.

Figure 2: 1st row: Segmentation of a noise-textured image, example of multiple partition, and use of user
interaction to improve the result. 2nd row: Quantitative comparison against NCut [6] and MS-NCut [19].

3 Laplacian Coordinates Energy Minimization on Graphs

We also propose a novel energy minimization clustering technique, first reported in [3,
5], that addresses many of the undesirable traits present in state-of-the-art methods such as
non-uniqueness of solution to the associated optimization problem, use of computationally
costly tools and the absence of an accurate and well-behaved (smoother) solution. The
new approach, called Laplacian Coordinates (LC), guarantees uniqueness of solution for
the segmentation problem, presenting anisotropic behavior to ensure contour adherence
on image boundaries. Moreover, the method allows for user intervention while leading to
smoother and accurate solutions. Other important characteristic of Laplacian Coordinates
is that the minimizer of the cost function is given by the solution of a constrained system
of linear equations, making the algorithm quite simple to be used and coded [3].

3.1 Energy Minimization for Graph Clustering on Images

As a basic tool to compute the Laplacian Coordinates energy, we define a weighted
graph G = (V,E,WE) from the image where V is the set of nodes corresponding to the
image pixels, E is the edge set built from pairs of pixels locally connected in an 8-connected
stencil, and WE defines the set of weights. The LC energy E is then computed as follows:

E(x) =
∑
i∈B

‖xi − xB‖22 +
∑
i∈F

‖xi − xF ‖22 +
1

2

∑
(i,j)∈E

‖wij(xi − xj)‖22, (3)
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where x = (x1, x2, ..., xn) is the saliency map which assigns a scalar value xi to each
pixel pi of the image. The rationale behind the LC approach is that the non-pairwise
terms from Equation (3) enforce fidelity of user-labeled pixels pi, i ∈ B ∪F , to the scalars
xB (background) and xF (foreground), respectively (see Fig.3 (middle)), while the last
quadratic term imposes spatial smoothness within image segments and allows sharp jumps
across image boundaries. Energy (3) is efficiently minimized by solving a sparse system of
linear equations [3]. For a detailed discussion regarding Eq. (3), see the seminal works [3,5].

3.2 Experimental Results and Evaluations

In this section we provide a comparative evaluation of Laplacian Coordinates against
five competing state-of-the-art methods, more specifically: Graph Cuts (GC) [25], Power
Watershed (PWS), Maximum Spanning Forest (Kruskal’s and Prim’s algorithms - MSFK
and MSFP) [26], and Random Walker (RW) [4]. To quantitatively evaluate the results,
we employ a set of well-established metrics on the classical benchmark Grabcut from Mi-
crosoft. As depicted in Fig.3 (bottom), the proposed approach quantitatively outperforms
other competing techniques. A more comprehensive set of evaluations can be found in [3].
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Figure 3: 1st row: (left) LC against RW on two unitary weighted graphs and (right/2nd row) results
produced by our approach. 3rd row: comparison of our method (LC) against five state-of-the-art methods.

4 Image Inpainting and Photo Colorization

We also proposed in the thesis new algorithms for image inpainting and colorization.
The methods rely on the accuracy of our segmentation apparatus and numerical PDEs to
properly work, as reported in [3,8,14]. For general illustrations, see Fig. 4 and the videos1.

1(a) Inpainting examples: https://icmc.usp.br/e/4aac2 (b) Segmentation examples: http://icmc.usp.br/e/cd848
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Figure 4: Inpainting and colorization illustrations obtained from the proposed methodologies [3,8,13,14].
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