
Proceeding Series of the Brazilian Society of Computational and Applied
Mathematics

Reduction and Decomposition Optimizations in Quantum

Computing Simulation Applied to the Shor’s Algorithm

Anderson Avila1

Renata Reiser2

Mauŕıcio Pilla3

PPGC, CDTEC, UFPEL, Pelotas, Brazil

Abstract. Due to the expansion of transformations and read/write memory states by tensor
products in multidimensional quantum applications, the exponential increase in temporal
and spatial complexities constitutes one of the main challenges for quantum computing
simulations. Simulation of these systems is important in order to develop and test new
quantum algorithms. This work presents reduction and decomposition optimizations for the
Distributed Geometric Machine environment. By exploring properties as the sparsity of the
Identity operator and partiality of dense unitary transformations, better storage and distri-
bution of quantum information are achieved. The main improvements are implemented by
decreasing replication and void elements inherited from quantum operators. In the evalua-
tion of this proposal, Shor’s algorithm considering 2n+3 qubits in the order-finding quantum
algorithm was simulated up to 25 qubits over CPU, sequentially and in parallel, and over
GPU. Results confirm that temporal complexity is reduced. When comparing our imple-
mentations running on the same hardware with LIQUi|〉, academic release version, our new
simulator was faster and allowed for the simulation of more qubits.

Key-words. Quantum Computing Simulation, Parallel Processing, GPU, Shor’s algorithm

1 Introduction

Quantum Computing (QC) is a new paradigm exploring quantum mechanics to pro-
vide unsurpassed parallelism. However, quantum computers are still in their early days
and current implementations cannot provide more than a few quantum bits, or qubits, in
a reliable way. Until quantum computers become widely available, development and test
of new algorithms for these systems may be done by analytical processes or by simulation.
Although iterative simulation provides many advantages over analytical processes, simu-
lation of QC over classical computers is a demanding task both in terms of temporal and
spatial complexity. As qubits may be represented as matrices and each quantum trans-
formation (QT) as an operation between two matrices, resulting matrices have their sizes
greatly increased with the number of qubits.

1abdvila@inf.ufpel.edu.br
2reiser@inf.ufpel.edu.br
3pilla@inf.ufpel.edu.br

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

Trabalho apresentado no CNMAC, Gramado - RS, 2016.

DOI: 10.5540/03.2017.005.01.0100 010100-1 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0100


2

In this work, the representation of quantum transformations (QTs) are improved by the
clever use of the Identity Operator (Id-operator) and by splitting independent operations.
Instead of executing QTs in a single step, they are divided in sub-quantum transformations
and only the different values from Id-operators are stored.

Although the number of steps required for simulation is increased, simulation time is
greatly reduced even when steps are sequentially executed. Relative speedups of more
than 10,000× were achieved for the most demanding transformations when compared
to previous works [1], thus making quantum computing simulation more affordable and
interesting for a range of algorithms.

In the evaluation of this proposal, simulations of Shor’s algorithm based on the quan-
tum circuit described in [2] are performed up to 25 qubits over CPU and GPU using the
D-GM Environment [3]. When compared to our implementations running on the same
hardware with LIQUi|〉: Simulation and Compilation of Quantum Algorithms [4], our sim-
ulator is faster and allows for the simulation of more qubits than their academic release
version.

2 Reducing Simulation Complexity

In previous works [3,5,6], we defined processes related to n-dimensional QTs through
lower order basic matrices to reduce the memory volume used on simulations due to the
exponential growth of their representation using a unique matrix (2n × 2n). QT elements
required for the computation of a QA are generated during execution time through itera-
tions on those elementary processes, simulating the tensor product behavior on quantum
processes and states. However, the computational time spent on those iterations is high,
becoming a bottleneck for QA execution. The optimization proposed on this paper is
mainly related to the reduction of spatial and temporal complexities associated to QTs
by the intelligent use of the Identity operator (Id-operator).

Two distinct approaches were used, which are described in the following subsections.

2.1 Avoiding replication and sparsity inhered from Id-operators

The first optimization explores the behavior associated with the Id-operator and other
QTs by tensor products. In such cases, the Id-operator not only replicates the values of
other operators but also introduces sparsity in QTs. Thus, it is possible to store only
the tensor product expansion among QTs different from the Id-operator, decreasing the
spatial complexity by generating a reduced matrix (RM).

Since the RM order is lower than the state dimension, it is not possible to perform
the multiplication between matrix/vector as it is usually done to calculate other new
amplitudes. This optimization adopts a different approach where information about the
calculation of each new amplitude is described as follows:

(i) Each bit of a new amplitude position is related to an operator; the most significant
bit to the 1st-qubit operator, the 2nd most significant bit to the 2nd-qubit operator,
and so on;

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0100 010100-2 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0100


3

(ii) Bits related to operators diverse from I are considered on-bits;

(iii) The RM line used for the calculation is determined by the concatenation of the
on-bits;

(iv) Each element of this line is multiplied by an amplitude of the read state, determined
replacing the bits that represent the element column by the on-bits of the new
amplitude; and

(v) The new amplitude value is the sum of these products.

As an illustration, we shall consider a generic operator applied to the first qubit of a
2-dimensional state in Eq.(1). RM elements are described in the form mij, where i and j
are its line and column, respectively. State amplitudes are described in the form ab, where
b is the amplitude position on the state, with its on-bits in red for better visualization.

(
m00 m01

m10 m11

)
×


a00

a01

a10

a11

 =


a00 ×m00 + a10 ×m01

a01 ×m00 + a11 ×m01

a00 ×m10 + a10 ×m11

a01 ×m10 + a11 ×m11

 (1)

Although this concept optimizes the representation of QTs involving Id-operators,
not all QTs have (enough) Id-operators to make possible their representation through a
single matrix in memory. Overcoming this limitation, the next optimization considers the
decomposition of QTs.

2.2 Decomposing QTs based on Id-operators

An n-dimensional QT can be decomposed increasing the number of steps for its com-
putation, allowing to distribute their operators in these steps and control the amount of
Id-operators in each one, preserving the behaviour and properties of the QT. Figure 1(a)
shows the QT H ⊗H and its decomposition in two steps, H ⊗ I and I ⊗H, that can be
computed in any order. Controlled QTs can also be decomposed conserving the controls
associated to the operators, as shown in Figure 1(b). Using this approach, the QT spa-
tial complexity can be reduced limiting the number of Id-operators in decomposed steps,
providing representation of each step by a single matrix.

(a) Decomposition of non-controlled QTs (b) Decomposition of controlled QTs

Figure 1: Decomposition of QTs

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0100 010100-3 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0100


4

3 Improving scalability of QTs

Despite the possibility of modeling QTs with lower spatial complexity using the ap-
proach presented on the previous section, the size of read/write memory-states becomes
a limit for n-dimensional QTs, since it also increases exponentially (2n). Once the GPU
memory is typically smaller than the main RAM, it is necessary to adopt an approach
which provides scalability to multi-qubit QTs.

The Mixed Partial Process (MPP) concept, presented in [1], provides control over the
increase in the size of read/write memory-states in the calculation of a QT. Based on
that, n-dimensional QTs with more qubits than the limit set by the GPU memory may
have their read/write memory-states partitioned into 2p sub-states, where p indicates the
number of qubits beyond the GPU memory limit, making its calculation possible. The
number of read sub-states that each write sub-state needs access to perform the calculation
of their amplitudes is 2r, where r is the number of operators affected by the partition.
Affected operators refer to the number of operators different from Id-operator present in
the first p qubits of the step being computed. Therefore, steps without affected operators
only need the correspondent read sub-state, which makes them independent.

4 Implementation

The integrated approach considering the concepts described on the previous sections
aims to reduce spatial and temporal complexity in simulation of multi-qubits quantum
applications. The QT decomposition for executions on GPUs is divided in two parts:
(i) classification of QTs in groups, dividing operators non-controlled and with distinct
controls; (ii) QT steps are formed by operators which belong to the same group and act
on consecutive qubits respecting the established limit of operators by step. Affected and
non-affected operators can not be part of the same step if the memory was partitioned.

Figure 2 shows a 9-qubit QT considering limits of 3 operators by step and 8 qubits for
execution. The QT is firstly divided into 3 groups and from these, in 5 steps. The group 1
is divided into 2 steps, despite having 3 operators in consecutive qubits, since the memory
partition affects the first qubit.

After the decomposition, QT steps are recalculated. As seen in Section 3, affected
steps are calculated one by one, a kernel call is performed for each combination of write
and read sub-states in its computation. Non-affected steps are iteratively executed, par-
tition by partition, reducing the communication between host and GPU, since the GPU
memory space with the SUB-QT calculation related to that partition serves as input to
the execution of the next one, for the same partition.

The best results in CPUs using the decomposition approach are reached when limits
in the number of operators per step of 1 and 2 are considered. Hence, the option of
calculating operator by operator, or a limit of 1, was chosen for all simulations by two
classes of operators: (i) Dense - operators defined by matrices without void elements.
These operators do not allow the application of aggressive optimizations; and (ii) Sparse
- operators with void elements in most positions but in the main diagonal. In these cases,
optimizations discarding calculations with void elements may be applied.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0100 010100-4 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0100


5

Figure 2: SUB QT

Computing dense operators is as described in Eq. (1). For sparse operators, Eqs. (2)
and (3) define how each amplitude can be calculated using a single value from the matrix
and state to be calculated, while dense operators require two values of each structure.

(
m00 0

0 m11

)
×


a00

a01

a10

a11

 =


a00 ×m00

a01 ×m00

a10 ×m11

a11 ×m11

 (2)

(
0 m01

m10 0

)
×


a00

a01

a10

a11

 =


a10 ×m01

a11 ×m01

a00 ×m10

a01 ×m10

 (3)

The QT execution is realized operator by operator. For each one, its type is identified
and then the corresponding loop is executed in order to produce the new amplitudes.
Parallel execution in CPUs was implemented in OpenMP [7], adding the “parallel for”
pragma in loops where the new amplitudes are computed.

5 Results

The main contributions of this work can be evaluated through simulation of Shor’s
algorithm considering numbers of 6 up to 12 bits, 15 up to 25 qubits.

CPU simulations were sequential and parallel up to 4 Threads, GPU simulations pa-
rameters considered were operators limited by step of 1 to 6 and limit of GPU qubits of
26 up to 28 in order to analyze the behavior of the new D-GM algorithm. Tests were

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0100 010100-5 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0100


6

performed in a desktop with an Intel Core i7-3770 processor, 8 GB RAM, and an NVidia
GTX Titan X GPU. The experiments were executed over Ubuntu Linux version 14.04, 64
bits, and CUDA Toolkit 7.0.

During the simulation, the average simulation time for Shor’s algorithm was calculated
from 10 executions.

5.1 Shor’s Algorithm

Simulation time obtained for Shor’s algorithm using LIQUi|〉 and D-GM simulator can
bee seen in Table 1. LIQUi|〉 execution time was obtained from the “minutes for running”
on the log file generated after executing their built-in Shor with the optimization option in
“true”. Note that the D-GM simulator presented better results on every number factored
for all types of execution. CPU execution shows gain of performance for the parallel
execution as the number of threads increase. As expected, GPU executions have the best
times of all cases when the quantum part of Shor’s algorithm becomes the simulation
bottleneck, that would be for numbers with 7 or more bits.

Table 1: Average Simulation Times for Shor’s Algorithm, measured in seconds.
LIQUi|〉 D-GM

Number Bits Qubits Seq. 1 Thread 2 Threads 4 Threads GPU
57 6 15.00 11.01 1.49 1.53 0.92 0.87 0.99
119 7 17.00 47.00 9.26 9.36 5.01 3.41 2.64
253 8 19.00 201.39 57.10 58.02 30.27 17.70 10.17
485 9 21.00 1, 166.36 358.89 348.49 239.69 211.64 50.84

1, 017 10 23.00 5, 905.24 2076.11 2, 055.28 1, 389.96 1, 249.54 280.67
2, 045.00 11 25.00 SL NE NE NE NE 1, 623.87

Seq. - Sequencial. SL - Simulator Limit. NE - Not executed.

6 Conclusion

In this paper, a new approach to reduce quantum computing simulation’s temporal and
spatial complexity was presented. By using mixed partial processes in conjunction with
the Id-operator and sub-quantum transformations, it was possible to simulate a larger
number of qubits in a single GPU.

The two approaches proposed in the introduction to improve performance were imple-
mented in the D-GM framework, but are not restricted to this environment.

Shor’s simulations showed best results on the D-GM framework when compared to
LIQUi|〉 simulator. For the largest factored number (10 bits), CPU sequential execution
was 2.84× faster, CPU parallel execution 4.72× faster with 4 threads, and the GPU
execution 21.03× faster.

Ongoing work considers modeling the behavior of agents using fuzzy quantum compu-
tations [8], and ranges from applications to develop QAs for quantum information.

In future works, we intend to use the quantum Id-operator optimizations in distributed
heterogeneous systems, comprised of multiple computers with GPUs.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0100 010100-6 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0100


7

Acknowledgments

Project partially founded by grants 309533/2013-9 (PQ-2 CNPq), 309533/2013-9 (PqG
FAPERGS), and 448766/2014-0 (MCTI/CNPQ/Universal 14/2014 - B). Student sup-
ported by masters grant from CAPES.

References

[1] A. B. de Avila, M. F. Schumalfuss, R. H. S. Reiser, M. L. Pilla, and A. K. Maron.
Optimizing Quantum Simulation for Heterogeneous Computing: a Hadamard Trans-
formation Study. Journal of Physics: Conference Series, 649(1):012004, 2015.

[2] Stephane Beauregard. Circuit for shor’s algorithm using 2n+3 qubits. Quantum Info.
Comput., 3(2):175–185, March 2003. ISSN: 1533-7146.

[3] A. B. de Avila, A. K. Maron, R. H. S. Reiser, M. L. Pilla, and A. Yamin. GPU-Aware
Distributed Quantum Simulation. In Symposium on Applied Computing, pages 860–
865, Gyeongju, March 2014. Proc. of the 29th ACM Symposium on Applied Computing
(SAC). DOI: 10.1145/2554850.2554892.

[4] D. Wecker and K. M. Svore. LIQUi|〉: A Software Design Architecture
and Domain-Specific Language for Quantum Computing, 2014. Available at
http://arxiv.org/abs/1402.4467.

[5] A. K. Maron, R. H. S. Reiser, and M. L. Pilla. High-performance quantum computing
simulation for the quantum geometric machine model. In CCGRID 2013 IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, pages 1–8, NY, May
2013. IEEE. DOI: 10.1109/CCGrid.2013.50.

[6] A. K. Maron, R. H. S. Reiser, M. L. Pilla, and A. Yamin. Quantum processes: A new
interpretation for quantum transformations in the VPE-qGM environment. In CLEI
2012, pages 1–10. IEEE Computer Society - Conference Publishing Services, 2012.
DOI: 10.1109/CLEI.2012.6426919.

[7] OpenMP Architecture Review Board. The OpenMP API specification for parallel
programming, 2015. Available at http://openmp.org/wp/openmp-specifications.

[8] A. Raghuvanshi and M. Perkowski. Fuzzy quantum circuits to model emotional behav-
iors of humanoid robots. In Evolutionary Computation (CEC), 2010 IEEE Congress
on, pages 1–8. IEEE, 2010. DOI: 10.1109/CEC.2010.5586038.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0100 010100-7 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0100

