Trabalho apresentado no XL CNMAC, Evento Virtual - Co-organizado pela Universidade do Mato Grosso do Sul (UFMS).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Codificação caótica de imagens

Eugênio G. Sabatini¹ Marcio Eisencraft² Magno T. M. Silva³ Escola Politécnica da USP, São Paulo, SP

Sinais caóticos são determinísticos, aperiódicos e possuem dependência sensível às condições iniciais [2]. Assim, eles podem ser utilizados em aplicações em que se deseja dificultar a detecção de uma mensagem [7]. Neste artigo, é feita a codificação de uma imagem utilizando o sistema proposto em [4] com o objetivo de testar o quão escondida está a imagem no sinal codificado. Esse sistema garante que a imagem original pode ser sempre recuperada. A codificação é feita por meio da função $c^{(1)}$, que consiste em uma combinação convexa entre o sinal caótico x(n) e os pixels m(n) da imagem, em que o parâmetro da combinação é dado por $\gamma \in [0;1]$, isto é, $c^{(1)} = (1 - \gamma)x(n) + \gamma m(n)$. Quanto menor o valor de γ , maior a influência do sinal caótico na imagem [1]. Além disso, utiliza-se a função $c^{(2)}$ que consiste no produto entre os pixels da imagem e o sinal caótico [1].

Nas simulações utilizam-se três mapas como geradores de sinais caóticos (GSC): o mapa quadrático de [3], o mapa de Hénon [5] e a extensão 3D do mapa de Hénon de [4]. Para comparar a imagem codificada com a imagem original, utiliza-se o erro quadrático médio percentual (%MSE) \in [0; 100] [6, Eq.(25)], sendo que para duas imagens idênticas, %MSE = 0. Na Figura 1 são apresentados os valores de %MSE calculados para a imagem apresentada na Figura 2a, codificada utilizando $c^{(1)}$ e $c^{(2)}$ para cada um dos três mapas em função de γ de $c^{(1)}$.

Figura 1: Valores de %MSE em função do parâmetro γ de $c^{(1)}$.

¹eugenio.sabatini@usp.br; Bolsista CNPq (119671/2019-0)

²marcioft@usp.br; CNPq (311039/2019-7) e CAPES (código de Financiamento 001)

³magno.silva@usp.br; FAPESP (2017/20378-9) e CNPq (304715/2017-4)

2

A partir da Figura 1, pode-se perceber que para a codificação $c^{(1)}$ e $\gamma < 0,5$ é possível obter valores elevados (> 90) de %MSE para os três mapas e a imagem original está pouco visível na imagem codificada. Em contrapartida, para $\gamma > 0,6$ nos mapas quadrático e de Hénon, e para $\gamma > 0,75$ no mapa de Hénon 3D, %MSE ≈ 0 e a imagem original fica aparente na imagem codificada. Além disso, para $\gamma < 0,35$ não há valor de %MSE para o mapa de Hénon 3D devido à sua divergência [1].

Na Figura 2, são apresentados exemplos de codificação da imagem apresentada na Figura 2a, utilizando $c^{(1)}$ com $\gamma = \{0,1;0,4;0,6\}, c^{(2)}$ e o mapa quadrático como GSC. Quando se utiliza $c^{(1)}$ com $\gamma = 0,1$ ou $c^{(2)}$, a imagem original fica escondida na imagem codificada. No entanto, quando se utiliza $c^{(1)}$ com $\gamma = 0,4$, aspectos da imagem original são encontrados na imagem codificada. Por fim, para $\gamma = 0,6$, em que a imagem codificada é similar à imagem original.

Figura 2: (a) Imagem original, (b) imagem codificada utilizando $c^{(1)}$ com $\gamma = 0,1$, (c) imagem codificada utilizando $c^{(1)}$ com $\gamma = 0,4$, (d) imagem codificada utilizando $c^{(1)}$ com $\gamma = 0,6$ e (e) imagem codificada utilizando $c^{(2)}$.

Com os resultados obtidos, pode-se concluir que é possível realizar a codificação de uma imagem utilizando o sistema de [4], que permite a recuperação perfeita da imagem original. Considerando a codificação $c^{(1)}$ com uma escolha adequada do parâmetro γ , pode ser difícil detectar a imagem a partir da imagem codificada. Considerando a codificação $c^{(2)}$, o mapa quadrático e o mapa de Hénon 3D são os mais eficazes em esconder a mensagem, com %MSE ≈ 100 .

Referências

- Abib, G. A. Desempenho em canal com ruído de um sistema de comunicação baseado em caos, Dissertação de Mestrado, Universidade Federal do ABC, 2013.
- [2] Alligood, K. T., Sauer, T.D. and Yorke, J. A. Chaos: An Introduction to Dynamical Systems. In Textbooks in Mathematical Sciences. Springer-Verlag New York, 1996. ISSN: 1431-9381.
- [3] Eisencraft, M. and Baccalá, L. A. The Cramer-Rao bound for initial conditions estimation of chaotic orbits, *Chaos, Solitons & Fractals*, 38:132-139, 2008. DOI:10.1016/j.chaos.2006.10.067.
- [4] Eisencraft, M., Fanganiello, R. D. and Baccalá, L. A. Synchronization of discrete-time chaotic systems in bandlimited channels, *Mathematical Problems in Engineering*, 2009:1-12, 2009. DOI:10.1155/2009/207971.
- [5] Hénon, M. A two-dimensional mapping with a strange attractor, Communications in Mathematical Physics, 50:69-77, 1976. DOI:10.1007/BF01608556.
- [6] Kundur, D. and Hatzinakos, D. Blind image deconvolution, *IEEE Signal Processing Magazine*, 13:43-64, 1996. DOI:10.1109/79.489268.
- [7] Tam, W. M., Lau, F. C. M. and Tse, C. K. Digital Communications with Chaos. Elsevier Science, 2010.