
Proceeding Series of the Brazilian Society of Computational and Applied
Mathematics

Consistent Approximations to Impulsive Optimal Control

Problem

Daniella Porto1

Geraldo Nunes Silva2
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Abstract. We study impulsive optimal control problem and apply a theory called consistent
approximations which was introduced in [1, 2]. From an infinite dimension problem (P ),
we can build a sequence of discrete problems (PN ) with finite dimension. We show that
these discrete problems epi-converge to (P ) which ensures that all sequence of global or
local minimum of (PN ) that converge, will converge to a global or local minimum of (P ),
respectively.
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1 Introduction

There exist many papers that discuss optimality conditions for impulsive optimal con-
trol problems where the control systems involve measures. On the other hand, the litera-
ture about numerical methods for impulsive optimal control problems is rather scarce.

We show that an impulsive optimal control problem can be discretized by Euler’s
method to generate a subsequence of optimal trajectories of Euler that converges to an
optimal trajectory of the continuous problem, using an appropriate metric.

2 Theory of Consistent Approximations

Let B be a normed space. Consider the problem

(P ) min
x∈SC

f(x), (1)

where f : B → R is continuous and SC ⊂ B.
LetN be an infinite subset of N and {SN}N∈N be a family of finite dimension subspaces

of B such that SN1 ⊂ SN2 if N1 < N2 and ∪SN is dense in B. For all N ∈ N , let
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fN : SN → R be a continuous function that approximates f(·) over SN , and let SC,N ⊂ SN
be an approximation of SC . Consider the approximated problems family

(PN ) min
x∈SC,N

fN (x) N ∈ N . (2)

Definition 2.1. Suppose that the functions f(·) and fN (·) and the sets B, SC , SN and
SC,N are defined as above.

i) We say PN epi-converge to P if:
a) For all x ∈ SC there exists a sequence {xN}N∈N , with xN ∈ SC,N , such that xN →N x,
with N →∞, and limfN (xN ) ≤ f(x);
b) For all infinite sequence {xN}N∈K, K ⊂ N , such that xN ∈ SC,N , for all N ∈ K, and
xN →K x, with N →∞, then x ∈ SC and limN∈KfN (xN ) ≥ f(x).

ii) We say the upper semicontinuous functions γN : SC,N → R are optimality functions
for the problems (PN ) if γN (η) ≤ 0, ∀ η ∈ SC,N and if η̂N is a local minimizer of (PN )
then γN (η̂N ) = 0. We can define the optimality function γ : SC → R for (P ) in the same
way.

iii) The pairs (PN , γN ) of the sequence {(PN , γN )}N∈N are consistent approximations to
the pair (P, γ) if PN epi-converge to P and for all sequence {xN}N∈N where xN ∈ SC,N
and xN → x ∈ SC we have limγN (xN ) ≤ γ(x).

3 The Impulsive System

Consider the impulsive system{
dx = f(x, u)dt+ g(x)dΩ, t ∈ [0, T ],

x(0) = ξ0 ∈ C,
(3)

where f : Rn×Rm → Rn is linear in u, g : Rn →Mn×q, whereMn×q is the space of n× q
matrices whose entries are real, C ⊂ Rn is closed and convex, the function u : [0, T ]→ Rm
is Borel measurable and essentially bounded, Ω := (µ, |ν|, ψti) is the impulsive control,
where the first component µ is a vectorial Borel measure with range in a convex, closed
cone K ⊂ Rq+. The second component is such that there exists µN : [0, T ] → K so that
(µN , |µN |) →∗ (µ, ν). As K ⊂ Rq+ we must have ν = |µ|. The functions ψti : [0, 1] → K
are associated to the measure atoms, that is, {ψti}i∈I where I is the set of atomic index
of the measure µ and we define Θ := {ti ∈ [0, T ] : µ(ti) 6= 0}, where µ(t) is the vectorial
value of the measure in K. They are measurable, essentially bounded and satisfy

i)
∑q

j=1 |ψ
j
ti

(σ)| = |µ|(ti) a.e. σ ∈ [0, 1];

ii)
∫ 1

0 ψ
j
ti

(s)ds = µj(ti), j = 1, 2, . . . , q,

for all ti ∈ Θ.

The functions ψti(·) are given us information about the measure µ during the atomic
time ti ∈ Θ.
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3.1 The Reparametrized Problem

Firstly, we study the impulsive system given by (3). For this, let Ω = (µ, ν, {ψti}ti∈Θ)
be an impulsive control and an arbitrary vector ξ0 ∈ Rn. Denote by Xti(·; ξ0) the solution
to the system {

Ẋti(s) = g(Xti(s))ψti(s), s ∈ [0, 1],

Xti(0) = ξ0.

Consider
xϑ := (x(·), {Xti(·)}ti∈Θ), (4)

where ϑ := (u,Ω), x(·) : [0, T ]→ Rn is a function of bounded variation with the disconti-
nuity points in the set Θ and {Xti(·)}ti∈Θ is the collection of Lipschitz functions defined
above.

According to [3], there exists (θ(·), φ(·)) the graph completion of the measure µ.

Definition 3.1. Let

y(s) :=

{
x(θ(s)) if s ∈ [0, 1] \ (∪i∈IIi) ,
Xti(αti(s)) if s ∈ Ii, for some i ∈ I.

(5)

Then yϑ := y is a reparametrized solution of (3) since y(·) is Lipschitz in [0, 1] and satisfies{
ẏ(s) = f(y(s), u(θ(s)))θ̇(s) + g(y(s))φ̇(s) a.e. s ∈ [0, 1],

y(0) = ξ0.
(6)

The next theorem is proved by [4].

Theorem 3.1. Suppose that the impulsive control Ω is given and xϑ is as defined in (4).
Then, yϑ is a reparametrized solution of (3) if and only if xϑ is a solution of (3).

4 The Impulsive Optimal Control Problem

Denote by Lm2 [0, T ] the set of all functions defined from [0, T ] to Rm that have integrable
square.

Let βmax ∈ (0,+∞) be such that every control u belongs to the ball B(0, βmax) :=
{u ∈ Rm; ‖u‖∞ ≤ βmax}.

Define
Û := {u ∈ Lm∞,2[0, T ]; ‖u‖∞ ≤ ωβmax},

where ω ∈ (0, 1) and Lm∞,2[0, T ] is the set of all functions defined from [0, T ] to Rm that
are essentially bounded. We consider the L2 norm over it.

Now, we define the set of constraints of the control u by

U := {u ∈ Û ;u(t) ∈ Ū ⊂ B(0, ωβmax) a.e. t ∈ [0, T ]},

where Ū ⊂ Rm is a convex, compact subset of the ball B(0, ωβmax).
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Consider the impulsive optimal control problem

min f0(x(0), x(T ))
(P ) dx = f(x, u)dt+ g(x)dΩ a.e. t ∈ [0, T ],

x(0) ∈ C, u ∈ U , gc supt∈[0,T ] |x(t)| ≤ L,

where f0 : Rn × Rn → R is continuous, L > 0 is given and the other functions and sets
are defined as above. Here,

gc sup
t∈[0,T ]

|x(t)| = sup
s∈[0,1]

|y(s)|.

Assumption 1. a) The functions f(·, ·) and g(·) are C1, and there exist constants K
′
,K

′′ ∈
[1,∞[ such that, for all x, x̂ ∈ Rn and u, û ∈ B(0, βmax) we have

|f(x, u)− f(x̂, û)| ≤ K ′
[|x− x̂|+ |u− û|], ‖g(x)− g(x̂)‖ ≤ K ′′ |x− x̂|,

b) The function f0(·, ·) and its first derivative are Lipschitz and is C1 over bounded set.
c) The impulsive system given by

dx = f(x, u)dt+ g(x)dΩ a.e. t ∈ [0, T ],
x(0) = ξ0 ∈ C, u ∈ U , gc supt∈[0,T ] |x(t)| ≤ L, (7)

where all the variables are like above, is controllable.

We define the set of constraints of the control u ◦ θ by

UC := {û ∈ Û1; û(s) ∈ Ū ⊂ B(0, ωβmax), a.e. s ∈ [0, 1]},

where βmax, Ū and ω are the same and Û1 := {û ∈ Lm∞,2[0, 1]; ‖û‖∞ ≤ ωβmax}.
Define

SC := {η ∈ C × UC × P : sup
s∈[0,1]

|yη(s)| ≤ L},

whose UC is as defined above and P is the set of all Ω := (µ, |ν|, {ψti}) that satisfies the
assumptions of the system (3). We represent by yη(·) the solution of the system (6) for
each η ∈ SC .

We obtain the following reparametrized problem

(Prep) min
η∈SC

f0(yη(0), yη(1)).

As (P ) and (Prep) has the same solution, up to reparametrization, we will use the
consistent approximations in (Prep).
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5 Approximated Problems

We need a metric over the space SC . Consider Ω1 = (µ1, |µ1|, {ψ1
ti}), Ω2 = (µ2, |µ2|, {ψ2

ti}) ∈
P. We need to define a metric in the measures space P. Consider the metric given by

d3(Ω1,Ω2) = d4(Ω1,Ω2) + d5(Ω1,Ω2),

where d4(·, ·) is a metric given by [5],

d4(Ω1,Ω2) = |(µ1, |µ1|)[0, T ]− (µ2, |µ2|)[0, T ]|

+
∫ T

0 |F1(t; (µ1, |µ1|))− F2(t; (µ2, |µ2|))|dt+ maxs∈[0,1] |φ1(s)− φ2(s)|,

and d5(·, ·) is related to the graph-convergence given by [6],

d5(Ω1,Ω2) =

∫ 1

0
|θ̇1(s)− θ̇2(s)|ds+

∫ 1

0
|φ̇1(s)− φ̇2(s)|ds.

Note that SC ⊂ Rn × Lm∞,2[0, 1]×P =: B. Define d = d1 + d2 + d3 the metric over B,
where d3 is given above and

d1(ξ0, ξ1) = |ξ0 − ξ1|Rn and d2(u1, u2) =

∫ 1

0
|u1 − u2|2Rmds.

We want to get consistent approximations to the problem (Prep). For this, define the
sets

N := {2k}∞k=1 and SN := CN × LmN × PN for all N ∈ N ,

where CN := Rn ∀ N ∈ N ,

LmN := {uN ∈ Lm∞,2[0, 1];uN (s) =
N−1∑
k=0

ukτN,k(s)},

with uk ∈ Rm and

τN,k(s) :=


1 ∀ s ∈ [k/N, (k + 1)/N [ if k ≤ N − 2,

1 ∀ s ∈ [k/N, (k + 1)/N ] if k = N − 1,

0 otherwise,

and PN is given by

PN := {(µN , |µN |, 0) : µN ([0, t]) := FN (t)},

where |µN | is the variation of the measure µN , FN (0) = 0 and over ]0, T ]

FN (t) :=

N−1∑
k=0

τ̄N,k(t),
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and

τ̄N,k(t) :=


bk + t−t̄k

t̄k+1−t̄k (bk+1 − bk), ∀ t ∈ [t̄k, t̄k+1],

k = 0, ..., N − 1, 0 = t̄0 < ... < t̄N = T,

0 otherwise,

with bk ∈ K for all k = 0, ..., N − 1. Note that µN is an absolutely continuous measure
from [0, T ] to K (K is convex) for all N ∈ N . Furthermore, the graph completion of µN
is defined by θN : [0, 1]→ [0, T ] and φN : [0, 1]→ K as

θN (s) := t̄k +
s− sk
h

(t̄k+1 − t̄k) whenever s ∈ [sk, sk+1],

φN (s) := FN ◦ θN (s),

where h = 1/N , sk = kh and k = 0, ..., N − 1, and it should satisfies:
i) There exists a constant b > 0 so that θN (·) is Lipschitz of rank b for all N ∈ N ;
ii) There exists a constant r > 0 so that lim supN→∞ ‖φ̇N (·)‖∞ ≤ r.

All the results enunciated from here are proved in [7].

Lemma 5.1. ∪PN is dense in P.

By the density of the union of each set, it follows that ∪SN is dense in B.
Given η = (ξ0

N , uN ,ΩN ) ∈ SN , we can use the Euler’s descretization to get the discrete
dynamic below by the continuous dynamic given by (6). In this way, take N ∈ N , h = 1/N
the step size and sk = kh, k = 0, ..., N . We have

yηN (sk+1)− yηN (sk) = f
(
yηN (sk), uN (sk)

)
(θN (sk+1)− θN (sk))

+g
(
yηN (sk)

)
(φN (sk+1)− φN (sk)) , k = 0, ..., N − 1, yηN (0) = ξ0

N ,

where θN : [0, 1]→ [0, T ] and φN : [0, 1]→ K are as defined in PN .
Define

SC,N := {ηN ∈ S̃C,N : |yηNN (s)| ≤ L+ 1/N ∀s ∈ [0, 1]},

where yηNN (·) is given by the linear interpolation of the points yηNN (sk), k = 0, ..., N .

Theorem 5.1. SC,N →N SC , N →∞.

Then, we get the approximated problems

(PC,Nrep ) min
η∈SC,N

f0
N (yηN (0), yηN (1)) where f0

N (yηN (0), yηN (1)) := f0(ξ0
N , y

η
N (1)).

Theorem 5.2. Suppose that Assumption 1 holds. Let

γ(η) := min
η̄∈SC

(
〈∇f0(ξ), ξ̄ − ξ〉+

1

2
d̄((ξ0, u,Ω), (ξ̄0, ū, Ω̄))

)
,

with ξ := (ξ0, yη(1)), ξ̄ := (ξ̄0, yη̄(1)), d̄ = d1 + d2 + d4 and γ : SC → R. Then γ is an
optimality function to the problem (Prep). We can define γC,N : SC,N → R in same way

we just defined γ(·) and have that γC,N is an optimality function to the problem (PC,Nrep ).
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Theorem 5.3. Suppose that Assumption 1 holds. Then, {(PC,Nrep , γC,N )}N∈N is a sequence
of consistent approximations to the pair (Prep, γ).

Theorem 5.4. Let (PC,Nrep ) and (Prep) be defined as before. Let {ηN}N∈N be a sequence

of local (respectively, global) minimizers of (PC,Nrep ) such that ηN →d η, with N → ∞ and
η ∈ SC . Then η is a local (respectively, global) minimizer of (Prep) and there exists K ⊂ N
such that f0

N (ξ0
N , y

ηN
N (1))→ f0(ξ0, yη(1)), with N →∞, N ∈ K.

Suppose {ηN}N∈N ⊂ SC,N is a sequence of global minimizers of (PC,Nrep ) that is con-
verging to η ∈ SC in the metric d. By Theorem 5.4, η is a global minimizer of (Prep).
Then yη(·) given by (6) is the function that minimizes (Prep). From yη(·) is possible to
find x(·) that minimizes (P ).

6 Conclusions

This work aims to contribute with the presentation of the Euler’s method application
for impulsive optimal control problems. We are contributing with the literature because
there are not many works about approximation in the impulsive optimal control case.
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